首页|特征解耦和实例分割的遥感影像近岸舰船检测

特征解耦和实例分割的遥感影像近岸舰船检测

扫码查看
针对光学遥感图像中近岸舰船目标检测的难题,提出了一种基于特征解耦和实例分割的深度学习舰船检测方法。通过自适应特征金字塔自动学习融合多尺度上下文,增强网络提取特征能力;采用边界特征解耦网络,引入边界先验知识,减少舰船紧密排布带来的漏检问题和港口与舰船相似带来的虚警问题,提升了网络检测性能;通过中心点预测对网络结果做进一步分割,进一步提高了舰船检测的精确度。在自建遥感近岸舰船检测数据集上的实验表明,论文方法优于传统的锚框方法,具有更好的检测性能。论文算法有效提高了近岸舰船目标检测的精确度,对复杂背景下近岸舰船的检测具有参考价值。
Nearshore Ship Detection in Optical Remote Sensing Images Using Feature Decoupling and Instance Segmentation
Aiming at the problem of inshore ship target detection in optical remote sensing images,a deep learning ship detec-tion method based on case segmentation and feature decoupling is proposed.Adaptive feature pyramid is used to automatically learn and fuse multi-scale context to enhance the ability of feature extraction.The boundary feature disentanglement network is adopted,and the boundary prior knowledge is introduced to reduce the missed detection problem caused by the close arrangement of ships and the false alarm problem caused by the similarity between ports and ships,and improve the network detection performance.The center point prediction is used to further segment the network results,so as to further improve the accuracy of ship detection.A re-mote sensing near-shore ship detection data set is built.Experiments on the self-built remote sensing near-shore ship detection da-taset show that the method in this paper is superior to the traditional anchor method and has better detection performance.Thesis al-gorithm effectively improves the accuracy of near-shore ship target detection,and has reference value for nearshore ship detection under clutter background.

optical remote sensing imagenear-shore ship detectiondeep learninginstance segmentationfeature decou-pling

袁思佳、王悦行、吴思路、田金文

展开 >

华中科技大学人工智能与自动化学院 武汉 430074

多谱信息处理技术国家级重点实验室 武汉 430074

天津津航技术物理研究所 天津 300308

光学遥感图像 近岸舰船目标检测 深度学习 实例分割 特征解耦

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(7)