首页|基于vtk-m的并行流线可视化算法优化

基于vtk-m的并行流线可视化算法优化

扫码查看
流线是矢量场可视化最具表现力的方法之一。随着计算机硬件和计算方法的发展,流场数据规模日趋增大,传统的流线算法在数据加载与积分计算存在瓶颈,导致算法效率低。开源的vtk-m算法库中提供的流线算法将积分任务划分为基本任务单元,理论上可调用海量线程并行处理,算法性能虽有提升,但在实践研究中发现并行效率低。针对这一问题,提出了基于动态结点树的并行流线可视化优化算法。主要通过粗粒度和细粒度两次划分,并行构建动态结点树对数据进行组织管理,利用索引关系缩小积分备选区域,实现对网格单元的快速定位;其次使用数据属性抽取与种子点任务并行执行等方法在算法其他环节进行优化,减小程序内存需求并提高对计算资源的利用率。在不同规模数据集下的实验结果表明优化后算法的有效性。
Optimization of Parallel Streamline Visualization Algorithm Based on Vtk-m
Streamlines are one of the most illuminating techniques to achieve fundamental goal of scientific insight from result-ing numerical simulations.Due to the large scale of the flow field data,the traditional streamline algorithm is inefficient,resulting in a slow visualization process.Although the performance of the streamline algorithm provided in the open source vtk-m has been im-proved,the parallel efficiency is low under multithreading.To solve this problem,a parallel streamline visualization optimization al-gorithm based on dynamic node tree is proposed.Mainly through two divisions of coarse-grained and fine-grained,parallel construc-tion of dynamic node tree to organize and manage data,and the index structure is established to conveniently narrow the alternative areas in the integration process.To reduce memory requirements of streamline integration by the methods of data blocks attribute ex-traction and employ parallel execution of seed integral tasks to leverage multi-core computing resources.The experimental results under different scale data sets show the effectiveness of the optimized algorithm.

scientific visualizationstreamlinedynamic node treeparallel computing

张晓蓉、陈浩、陈呈、李学俊、吴亚东

展开 >

西南科技大学 绵阳 621010

中国空气动力研究与发展中心计算空气动力研究所 绵阳 621010

四川轻化工大学 自贡 643000

科学可视化 流线 动态结点树 并行计算

国家数值风洞工程项目国家自然科学基金项目国家自然科学基金项目

NNW2019ZT6-A176187230461802320

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(8)