首页|基于CNN-LSTM的超宽带NLOS/LOS分类算法研究

基于CNN-LSTM的超宽带NLOS/LOS分类算法研究

扫码查看
超宽带(ultra-wideband,UWB)室内定位系统中,非视距(non-line-of-sight,NLOS)信号的识别与分类是影响定位精度的关键技术。为解决用于NLOS识别的信道冲激响应(Channel Impulse Response,CIR)中存在的噪声干扰问题以及传统NLOS识别方法多场景下阈值选取困难等问题,论文采用一种用于CIR数据去噪的可逆变换方法,并使用卷积神经网络(Convolutional Neural Network,CNN)结合长短期记忆网络(long short-term memory network,LSTM)的结构识别NLOS信号。采用开源数据集进行训练与验证,结果显示,CIR去噪后的CNN-LSTM分类精度最高可达90。62%。表明该方法可以有效提高NLOS信号分类精度。
Research on Ultra-wideband NLOS/LOS Classification Algorithm Based on CNN-LSTM
In ultra-wideband(UWB)indoor positioning systems,the identification and classification of non-line-of-sight(NLOS)signals is a key technology that affects positioning accuracy.In order to solve the problem of noise interference in the chan-nel impulse response(CIR)used for NLOS identification and the difficulty of threshold selection in multiple scenarios of traditional NLOS identification methods,this paper adopts a reversible transform for CIR data denoising method,and uses convolutional neural network(CNN)combined with long short-term memory network(LSTM)structure to identify NLOS signals.The open source data set is used for training and verification.The results show that the classification accuracy of CNN-LSTM after CIR denoising can reach up to 90.62%,indicating that this method can effectively improve the classification accuracy of NLOS signals.

UWBnon-line-of-sight identificationdenoisingneural networks

刘卿卿、徐帅、王思语、吴南、刘明江

展开 >

南京信息工程大学自动化学院 南京 210044

南京信息工程大学江苏省大气环境与装备技术协同创新中心 南京 210044

超宽带 非视距识别 去噪声 神经网络

国家自然科学基金项目

61701244

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(8)