首页|基于改进型Q-Learning算法的路径规划系统研究

基于改进型Q-Learning算法的路径规划系统研究

扫码查看
随着无人驾驶领域的兴起,人工智能、强化学习等概念开始普及。人工智能设备具有集成度高、可训练性以及可编程性等特点,在无人驾驶中的路径规划领域发挥了重要作用。论文首先介绍了现有研究中较为经典的路径规划算法,并针对Q-Learning算法效率低下等问题进行研究,提出了一种改进型Q-Learning算法。该算法首先对智能体的运动以及空间环境进行建模,其次改进了Q-Learning算法的奖励机制,最后规定了智能体的运动方式。仿真结果表明,基于改进型Q-Learning算法有效改善了智能体的运动路径以及工作效率。
Research on Path Planning System Based on Improved Q-Learning Algorithm
Artificial intelligence and reinforcement learning have become prominent as the field of unmanned driving has grown in popularity.Artificial intelligence equipment has a high level of integration,trainability,and programmability,and it is used extensively in the field of unmanned driving path planning.This paper first reviews previous research on the classical path plan-ning algorithm,then investigates the low efficiency of the Q-Learning method and presents an improved Q-Learning algorithm.The approach models the agent's movement and environment first,then designs the Q-Learning algorithm's reward mechanism,and last-ly specifies the agent's action.The simulation results show that the improved Q-Learning algorithm can effectively improve the move-ment path and work efficiency of the agent.

reinforcement learningpath planningrewardQ-Learning

娄智波、彭越、辛凯

展开 >

江苏大学计算机科学与通信工程学院 镇江 212000

强化学习 路径规划 奖励 Q-Learning

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(8)