首页|基于改进OpenPose的人体关键点检测算法

基于改进OpenPose的人体关键点检测算法

扫码查看
人体关键点检测在人体姿态估计领域具有广泛应用场景,针对其检测速度慢、多人场景下无法实现关键点全局最优匹配的问题,论文提出了一种基于改进OpenPose的人体关键点检测算法。首先,对经典OpenPose前置特征提取网络所使用的普通3D卷积进行深度可分离卷积(DSC)替换,降低模型参数规模提高检测速度;然后,针对关键点坐标回归支路(PCM)对应的坐标标签值,提出了基于高斯核的标注策略,使得网络训练过程更加鲁棒;最后,基于匈牙利算法做二分图匹配,实现了多人场景下关键点的全局最优匹配。论文在COCO2017数据集上进行算法评估,在消融试验中,检测帧率FPS达到34,相对经典OpenPose提升了36%,对应AP50、AP75、AP90指标分别达到92。5、81。4、70。8,提升了8。4%,9。1%,8。9%,且与其他关键点检测方案对比,具有较高的检测精度。
Human Key Point Detection Algorithm Based on Improved OpenPose
Human key point detection is widely used in the field of human posture estimation.To solve the problems of slow de-tection speed and inability to achieve global optimal matching of key points in multi-person scenes,this paper proposes a human key point detection algorithm based on improved OpenPose.Firstly,the ordinary 3D convolution used in the classic OpenPose pre-feature extraction network is replaced by DSC to reduce the scale of model parameters and improve the detection speed.Then,aiming at the coordinate label values corresponding to the key point coordinate regression branch(PCM),a labeling strategy based on Gaussian kernel is proposed,which makes the network training process more robust.Finally,based on Hungarian algorithm to do bipartite matching,the global optimal matching of key points in multiplayer scene is realized.In this paper,the algorithm is eval-uated on the COCO2017 data set.In the ablation test,the detection frame rate FPS reaches 34,which is 36%higher than the clas-sic OpenPose,and the corresponding AP50,AP75 and AP90 indexes reach 92.5,81.4 and 70.8 respectively,which are 8.4%,9.1%and 8.9%higher than other key point detection schemes.

human keypoint detectionOpenPoseconvolutional neural networkmatch of bipartite graph

汪志强、吴静静

展开 >

江南大学机械工程学院 无锡 214122

江苏省食品先进制造装备技术重点实验室 无锡 214122

人体关键点检测 OpenPose 卷积神经网络 二分图匹配

国家自然科学基金项目国家自然科学基金项目

6187324662072416

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(8)