首页|基于时序数据降维的脓毒症死亡风险预测模型

基于时序数据降维的脓毒症死亡风险预测模型

扫码查看
现有脓毒症患者死亡风险预测模型大多需要患者的血常规结果等数据,输入特征较多且采集化验流程复杂。针对这个问题,提出了改进的包裹式(Wrapper)特征筛选方法以及基于LSTM和XGBoost的SD2V-XGBoost预测模型,能够仅使用较少的临床实时体征预测脓毒症患者的死亡风险。首先,利用改进的包裹式特征筛选方法筛选出和患者死亡风险相关性高的特征;其次,使用LSTM网络将患者的时间序列数据映射成向量;最后,将LSTM网络输出的向量和患者体征的统计特征作为XGBoost的输入,预测患者的死亡风险。使用公开的MIMIC-Ⅲ数据集进行实验。在输入特征数量方面,和已有研究的模型对比,SD2V-XGBoost模型在保持预测精度的前提下将输入特征数量减少了71%;在预测精度方面,仅使用临床实时体征,SD2V-XGBoost的接受者操作特征曲线下面积为0。852 1,准确召回率曲线下面积为0。632 0,死亡样本召回率为72。15%,均优于LSTM、XGBoost和随机森林模型。
A Time Series Data Dimensionality Reduction-Based Death Risk Prediction Model in Sepsis
Most of the existing death risk prediction models for septic patients need data of blood routine examination,result-ing in more input features and complex collection process.To solve this problem,an improved wrapped feature selection method and SD2V-XGBoost prediction model based on LSTM and XGBoost are proposed,which can predict the death risk of septic patients with only less clinical real-time features.Firstly,the improved wrapped feature selection method is used to select the features with high correlation with the risk of death.Secondly,using LSTM neurons,patients'time series data are mapped into a vector.Finally,the vector output from LSTM network and the statistical characteristics of patients'time series data are used as the input of XGBoost to predict the risk of death.The experiment is carried out by using the public data set MIMIC-Ⅲ.In terms of the number of input fea-tures,compared with the existing model,SD2V-XGBoost model reduces the number of input features by 71%on the premise of maintaining the prediction performance.In terms of prediction performance,when only clinical real-time features are used,AU-ROC(Area Under Receiver Operating Characteristic Curve)of SD2V-XGBoost is 0.852 1,AUPRC(Area Under Precision Recall Curve)is 0.632 0,and the true positive rate is 72.15%,which are better than LSTM,XGBoost and random forest model.

long short-term memorydeath risk predictiontime series data processingfeature selectionXGBoost model

朱亚强、袁学光、李丹丹、李元涛、黄小红

展开 >

北京邮电大学计算机学院 北京 100876

北京邮电大学电子工程学院 北京 100876

南方医科大学附属深圳妇幼保健院麻醉科 深圳 518047

长短时记忆网络 死亡风险预测 时序数据处理 特征筛选 XGBoost模型

校企科研型联合实验室项目

B2019011

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(8)