首页|基于DDPG算法的无人船动态目标跟踪控制

基于DDPG算法的无人船动态目标跟踪控制

扫码查看
为了实现无人船在复杂海况上对目标的追踪,使用DDPG(Deep Deterministic Policy Gradient)算法对无人船进行运动控制,使无人船完成对运动目标的快速追踪。在Simulink中使用Nomoto模型对无人船的运动模型进行建模。针对无人船的运动具有大迟滞性的特点对无人船的状态量进行重构,使无人船智能体可以通过重构的状态空间观测到状态量的高阶差分量。为无人船对运动目标追踪的任务设置了不易陷入局部最优解的奖励函数,最终强化学习智能体通过与环境的交互学会了有效地控制无人船对运动目标进行追踪,验证了算法的有效性。
Moving Target Tracking Control of Unmanned Ship Based on DDPG Algorithm
In order to achieve the target tracking of the unmanned ship in complex sea conditions,the DDPG algorithm is used to control the motion of the unmanned ship,so that the unmanned ship can complete the rapid tracking of the moving target.The No-moto model is used to model the motion model of the unmanned ship.According to the characteristics of large hysteresis of un-manned ship motion,the state variables of unmanned ship are reconstructed,and the unmanned ship agent can observe the high or-der difference of state variables.The reward function that is not easy to fall into the local optimal solution is set for the task of un-manned ship tracking the moving target.Finally,the reinforcement learning agent learns to effectively control the unmanned ship tracking the moving target through the interaction with the environment,and verifies the effectiveness of the algorithm.

DDPGunmanned shipmotion controlmoving target tracking

李浩东、林伟、袁毓、胡智威、冯友兵

展开 >

江苏科技大学电子信息学院 镇江 212100

DDPG 无人船 运动控制 运动目标追踪

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(8)