首页|基于混合空洞卷积MobileNetV2的实时射流分割

基于混合空洞卷积MobileNetV2的实时射流分割

扫码查看
为了实时准确地提取出智能水炮的射流轨迹,使水炮在打击过程中根据目标运动自动调整打击方向,提出了基于混合空洞卷积MobileNetV2的实时射流分割模型。该模型使用轻量级网络MobileNetV2作为基础网络,只采用网络前7层,实现快速实时分割射流轨迹;添加混合空洞卷积层,采集不同感受野的多尺度语义信息,提高射流轨迹的分割精度;最后结合编码器-解码器的思想,链接MobileNetV2网络输出与混合空洞卷积层的输出,进一步细化分割结果。通过搭建小型智能水炮平台,采集数据集进行实验,实验结果表明,该模型平均交并比达到了0。781 6,分割一帧图片的平均速度为19 ms,在分割精度和分割速度上均取得了较好的表现。
Real-time Jet Segmentation Based on Mixed Dilated Convolution MobileNetV2
In order to quickly and accurately extract the jet trajectory so that the smart water cannon can automatically adjust the strike direction according to the target movement during the strike,a real-time jet segmentation model based on the mixed dilat-ed convolution MobileNetV2 is proposed.The model uses the lightweight network MobileNetV2 as the basic network,and only uses the first 7 layers of the network to achieve fast real-time segmentation of jet trajectories,a mixed cavity convolution layer is added to collect multi-scale semantic information of different receptive fields to improve jet trajectory segmentation accuracy.Finally,com-bine coding the decoder-decoder structure links the output of the MobileNetV2 network and the output of the mixed-hole convolu-tional layer to further refine the segmentation results.By building a small intelligent water monitor platform and collecting data sets for experiments,the experimental results show that the average intersection ratio of the model reaches 0.781 6,and the average speed of dividing a frame of picture is 19 ms,and it has achieved good performance in segmentation accuracy and segmentation speed.

MobileNetV2dilated convolutionencoder decoderreal time segmentationintelligent water cannon

田红、林云汉、陈姚节

展开 >

武汉科技大学计算机科学与技术学院 武汉 430065

智能信息处理与实时工业系统湖北省重点实验室 武汉 430065

冶金工业过程国家级虚拟仿真实验教学中心 武汉 430065

MobileNetV2 空洞卷积 编码器-解码器 实时分割 智能水炮

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(8)