首页|基于深度学习的三维人脸稀疏重建研究

基于深度学习的三维人脸稀疏重建研究

扫码查看
为提升三维人脸稀疏重建的精确性,论文参考深度学习领域的点云特征提取网络模型,搭建了全新的人脸关键点特征提取网络。该网络克服了传统投影重建法只能在二维平面进行拟合计算的缺点,可以直接在三维空间从输入的稀疏关键点中提取出关键点的全局特征,并转化为所需的人脸模型参数,从而实现了由稀疏关键点到三维人脸的重建过程。实验结果表明,该方法在BFM三维人脸库上的最终结果,重建精度明显优于传统投影重建法,具有更加出色的重建性能。
Research on 3D Face Sparse Reconstruction Based on Deep Learning
In order to improve the accuracy of 3D face sparse reconstruction,referring to the point cloud feature extraction net-work in the field of deep learning,a new face landmarks feature extraction network is established.This work overcomes the disadvan-tage that the traditional projection reconstruction method can only fit on 2D plane.It directly extracts global features from the input 3D sparse landmarks and converts them into the required face model parameters to realize the reconstruction process from sparse landmarks to 3D face.The experimental results show that the reconstruction accuracy of the method on BFM 3D face database is sig-nificantly better than the traditional projection reconstruction method,and has desirable performance.

deep learning3D facesparse reconstructionmorphable modelfeature extraction

黄志刚

展开 >

西安工程大学计算机科学学院 西安 710600

深度学习 三维人脸 稀疏重建 形变模型 特征提取

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(8)