首页|改进BP神经网络的公交驾驶行为控制方法

改进BP神经网络的公交驾驶行为控制方法

扫码查看
为降低城市智能公交安全事故的发生,通过驾驶辅助督导系统获取驾驶行为数据,提取驾驶行为特征值,结合驾驶行为特征影响因子,提出了一种智能公交不良驾驶行为的控制方法,解决城市公交安全驾驶问题。运用BP(Back Prop-agation)神经网络技术,对不良驾驶行为数据进行学习和训练,结合历史驾驶行为数据进行建模、分析,实现公交不良驾驶行为的有序督导和智能辅助。通过该系统采集公交车内外周边环境数据,结合改进BP神经网络算法与主成分分析方法对驾驶行为进行识别和判断,对不良驾驶行为训练集数据进行学习,更新网络权值和阈值,缩小网络误差,期望输出结果,减少驾驶行为多重共线、数据冗余的缺陷,实现对公交追尾报警和防碰撞算法的参数匹配。实验结果表明:通过对16个不良驾驶行为主成分数据进行预处理,发现前6个主成分贡献率达到69。731%,当第16个主成分时贡献率达到100%,采用改进BP网络准确率为85。33%,相比BP网络、DBN网络分类准确率高,满足城市公交不良驾驶行为防范的要求,为公交追尾报警、防碰撞提供依据,实例证明系统和算法具有实用性和可靠性。
Bus Driving Behavior Control Method Based on Improved BP Neural Network
In order to reduce the occurrence of urban intelligent public transport safety accidents,the driving behavior data is obtained through the driving assistant supervision system,the driving behavior characteristic values are extracted,and a control method of intelligent public transport bad driving behavior is proposed in combination with the influencing factors of driving behav-ior characteristics to solve the problem of urban public transport safety driving.BP(Back Propagation)neural network technology is used to learn and train the bad driving behavior data,model and analyze the historical driving behavior data,and realize the orderly supervision and intelligent assistance of the bad driving behavior of public transport.The system collects the data of the surrounding environment inside and outside the bus,combines the improved BP neural network algorithm with the principal component analysis method to identify and judge the driving behavior,learns the bad driving behavior training set data,updates the network weight and threshold,reduces the network error,expects the output results,reduces the defects of multiple collinear driving behaviors and da-ta redundancy,and realizes the parameter matching of the bus rear end collision alarm and anti-collision algorithm.The experimen-tal results show that the contribution rate of the first six principal components reaches 69.731%through preprocessing the data of the 16 principal components of bad driving behavior.When the 16th principal component is used,the contribution rate reaches 100%.The accuracy rate of the improved BP network is 85.33%,which is higher than the classification accuracy of BP network and DBN network.It meets the requirements of the prevention of bad driving behavior of urban public transport and provides a basis for rear end alarm and collision prevention of public transport.The example proves that the system and algorithm are practical and reliable.

intelligent public transportationdriving behaviorassistant supervision systemBP neural networkprincipal component analysis

陈深进

展开 >

广州南方学院电气与计算机工程学院 广州 510970

智能公交 驾驶行为 辅助督导系统 BP神经网络 主成分分析

广东省应用型科技研发重大专项资金项目

2015B010131004

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(8)