首页|基于高光谱技术的绿色辣椒识别研究

基于高光谱技术的绿色辣椒识别研究

扫码查看
由于颜色相似,普通RGB图像难以区分绿色辣椒与辣椒叶片,为了给田间绿色辣椒的采摘提供技术支持,迫切需要探索田间绿色辣椒的识别方法。论文利用高光谱成像仪对田间绿色辣椒进行实地扫描获取高光谱数据,将原始数据经过镜头校准、反射率校准后进行数据归一化,然后使用主成分分析方法提取辣椒的光谱数据特征,主成分分析后得到贡献率最大的4个主成分,将其分为4组,每组3个成分,用支持向量机和BP神经网络模型对每组辣椒进行识别。结果表明:与SVM相比,PCA123-BPNN可以显著提高辣椒的识别率,准确率达92。14%,识别效果较好。论文提出的PCA123-BPNN方法以期为识别与采摘绿色辣椒提供参考依据。
Research on Recognition of Green Pepper Based on Hyperspectral Technology
Due to the similar colors,it is difficult to distinguish between green peppers and pepper leaves in ordinary RGB im-ages.In order to provide technical support for picking green peppers in the field,it is urgent to explore the identification method of green peppers in the field.In this paper,a hyperspectral imager is used to scan field green peppers to obtain hyperspectral data.Af-ter the original data is calibrated by lens and reflectance,the data is normalized,and then the principal component analysis method is used to extract the spectral data characteristics of peppers,principal components.After the analysis,the four principal compo-nents with the largest contribution rate are obtained,and they are divided into four groups,each with three components,and each group of peppers is identified by the support vector machine and the BP neural network model.The results show that compared with SVM,PCA123-BPNN can significantly improve the recognition rate of pepper,the accuracy rate is 92.14%,and the recognition ef-fect is better.The PCA123-BPNN method proposed in this paper is intended to provide a reference for identifying and picking green peppers.

pepperhyperspectralprincipal component analysissupport vector machineneural network

黄华成、吴雪梅、张珍、刘红芸

展开 >

贵州大学机械工程学院 贵阳 550025

辣椒 高光谱 主成分分析 支持向量机 神经网络

贵州省农业产业技术体系建设专项经费贵州省科技计划项目

黔科合平台人才[2019]5616

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(8)