首页|结合天气因素的PPMCC-PSO-SVR热负荷预测研究

结合天气因素的PPMCC-PSO-SVR热负荷预测研究

扫码查看
为了提高换热站的能源利用率、优化管网调控策略,精准的热负荷预测十分有必要。论文采用五种方法分别是支持向量回归、极限梯度提升回归、网格搜索优化支持向量回归、网格搜索优化极限梯度提升回归及PPMCC-PSO-SVR,并分别结合天气因素建立热负荷预测模型进行比较。基于皮尔逊相关系数进行特征相关性分析后,选取逐时天气温度、湿度、供水流量、二次网供回水温度等五类数据作为热负荷预测模型的输入特征。结果表明:1)未调优原始模型参数前,极限梯度提升回归模型的各项评估指标均远远优于支持向量回归模型;2)结合天气因素的PPMCC-PSO-SVR模型各项评估指标最优,能有效地预测换热站短期热负荷的动态变化,其各项评估指标:R2为0。996 5,RMSE为0。151 1,MAE为0。118 6。
Research on PPMCC-PSO-SVR Heat Load Forecasting Combined with Weather Factors
An accurate forecast of heat load is necessary for the improvement of energy utilization and pipe network regulation strategy in heat exchange station.In this paper,five methods support vector regression,extreme gradient boosting regression,grid search optimizes support vector regression,grid search optimizes extreme gradient boosting regression and PPMCC-PSO-SVR are adopted to establish the heat load forecasting models combining weather factors and compare.The characteristic correlation analysis based on Pearson correlation coefficient,five parameters are selected to establish the heat load forecast model,namely hourly tem-perature,hourly humidity,water supply flow,secondary network water supply temperature and return water temperature.The re-sults show that before tuning the parameters of the original model,the evaluation indexes of the extreme gradient boosting regression model are far better than those of the support vector regression model.The PPMCC-PSO-SVR model presents the best performance by combining the weather factors,it can effectively predict the dynamics of heat load system during a short period.The R2,RMSE and MAE of PPMCC-PSO-SVR model are respectively measured 0.996 5,0.151 1 and 0.118 6.

weather factorsPPMCC-PSO-SVRheat load forecastPearson correlation coefficientgrid search

杨程博、朱静、陈建伟、张洋宁、马新春

展开 >

新疆农业大学计算机与信息工程学院 乌鲁木齐 830052

新疆电子研究所股份有限公司 乌鲁木齐 830052

天气因素 PPMCC-PSO-SVR 热负荷预测 皮尔逊相关系数 网格搜索

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(10)