首页|空间感知与多注意力加权融合的无锚目标检测网络

空间感知与多注意力加权融合的无锚目标检测网络

扫码查看
为解决现有U型目标检测框架空间感知能力有限与特征融合方式粗糙等问题,论文提出了空间感知与多注意力加权融合的无锚目标检测网络。首先,利用低层特征提取模块获取更多表征区域的低层细节信息。接着,利用多级反馈结构的全局残差感知模块对高级语义特征进行多级上下文提取,该操作可显著提高上下文区域的多尺度空间感知能力。最后,利用多注意力迭代融合模块有选择地处理粗糙特征,从而指导低层特征同高层语义特征进行高效特征融合,以帮助网络获得高分辨率的语义特征。同时,在损失中加入泛化交并比(IoU)损失指导网络以更准确和高效的方式预测结果。在标准的MSCOCO 2017和PASCAL VOC 2007两个数据集上进行了充分的实验,结果证实了所提方法的有效性。
Anchor-Free Object Detection Network via Spatial Perception and Multiple Attention Weighted Fusion
To solve several problems such as limited spatial perception ability and rough feature fusion strategy in the existing U-shaped object detection framework,an Anchor-Free object detection network based on spatial perception and multiple attention weighted fusion is proposed.Firstly,the primary feature extraction module is utilized to obtain low-level details of more representa-tion areas.In the next step,the global residual perception module with multi-level feedback structure is designed to extract multi-level context from high-level semantic feature,which can significantly improve the multi-scale spatial perception of the con-textual areas.Then,the rough features are selectively processed by multiple attention iterative fusion module,which aims to guide the efficient feature fusion of low-level features and high-level semantic features,helping the network obtain both high-resolution and semantic features.Meanwhile,generalized intersection over union loss is added into the loss,teaching the network to predict re-sults in a more accurate and efficient way.Sufficient experiments are conducted on two datasets including standard MSCOCO 2017 and PASCAL VOC 2007.The results demonstrate the effectiveness of the proposed approach.

deep learningobject detectionAnchor-Free networkmultiple attention fusionweighted iterative fusion

姜天、樊佳庆、宋慧慧

展开 >

南京信息工程大学自动化学院 南京 210044

南京航空航天大学计算机科学与技术学院 南京 211106

深度学习 目标检测 Anchor-Free网络 多注意力融合 加权迭代融合

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(10)