首页|融合贷款信息和轨迹特征的催收评分卡模型

融合贷款信息和轨迹特征的催收评分卡模型

扫码查看
针对现有汽车金融中车辆贷后逾期风险识别准确率低、效率低等问题,论文提出了一种XGBoost-SMOTE的逾期风险预测模型。该模型通过采用SMOTE的过采样方法构建相对均衡的不同类别比例数据集,提高了模型的泛化能力。同时,结合了车辆用户基本信息、贷款信息和车辆GPS轨迹信息来进行特征工程,将融合后的特征数据输入到XGBoost分类器中,最终完成了车辆贷后逾期风险识别,实验结果表明:相较于其他机器学习算法预测模型,该模型可以达到更好的预测性能。
Collection Scorecard Model Integrating Loan Information and Trajectory Features
This paper proposes a post-loan overdue risk of vehicle prediction model based on XGBoost-SMOTE to address the problems of the existing monitoring methods which can not identify risks effectively.In this paper,over sampling method of SMOTE is used to build a relatively balanced positive and negative proportion data set,which improves the generalization ability of the mod-el.And combined with the basic information of vehicle users,loan information and vehicle GPS track information for feature engi-neering.Then,the integrated feature data is input into XGBoost classifier,and finally complete the identification of post-loan over-due risk of vehicle.Compared with other machine learning algorithm prediction models,this model can achieve better prediction per-formance after the experiment.

automobile financepost-loan overdueGPS trajectoryrisk characteristics knowledge

王延松、张华伟、张磊、王蒙、陈剑

展开 >

奇瑞徽银汽车金融股份有限公司 芜湖 241000

长三角信息智能创新研究院 芜湖 241000

汽车金融 贷后逾期 GPS轨迹 风险特征知识

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(10)