首页|基于注意力机制的CNN-LSTM短期负荷预测

基于注意力机制的CNN-LSTM短期负荷预测

扫码查看
精准的电力负荷预测是电力系统运行的关键前提。论文为提高短期电力负荷的预测精度,采用一种新的预测方法。通过Spearman相关系数对四季影响因素与负荷序列进行相关性分析;结合CNN易处理高维数据且可以更好挖掘到负荷序列的隐含特性,注意力机制可以对输入的影响因素进一步分配权重的优势,以相关性分析出的四季主要因素为基础进行仿真实验。实验结果表明,特征选择输入的CNN-LSTM-Attention组合网络对比全特征输入的CNN-LSTM-Attention网络、全特征输入的CNN-LSTM网络,在不同季节上的日负荷预测精度均有进一步提高。
Short-term Load Prediction by CNN-LSTM Based on Attention Mechanism
Accurate power load forecasting is a key prerequisite for power system operation.In this paper,a new forecasting method is proposed to improve the accuracy of short-term power load forecasting.The correlation analysis between the influencing factors of four seasons and the load sequence is carried out by Spearman correlation coefficient.Combining the advantages that CNN is easy to handle high-dimensional data and can better tap into the implicit characteristics of the load sequence,and the attention mechanism can further assign weights to the input influencing factors,simulation experiments are carried out based on the main fac-tors of four seasons from the correlation analysis.The experimental results show that the combined CNN-LSTM-Attention network with feature-selective input has further improved the daily load prediction accuracy in different seasons compared with the CNN-LSTM-Attention network with full feature input and the CNN-LSTM network with full feature input.

load predictioncorrelation analysisCNNLSTMattention mechanism

王晓兰、张惟东、王惠中

展开 >

兰州理工大学 兰州 730050

负荷预测 相关性分析 CNN LSTM 注意力机制

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(10)