首页|基于深度学习的地理知识图谱构建方法研究

基于深度学习的地理知识图谱构建方法研究

扫码查看
地理知识图谱是提供地理知识服务的关键技术,实现其自动化构建对发展地理人工智能应用具有非常重要的意义.为解决地理知识图谱自动化构建的问题,提出了一种基于BiLSTM-CRF网络提取地理实体和Bert-BiGRU-Attention网络提取方位关系构建领域地理知识图谱的方法.实验结果表明,基于该方法所自动构建的领域地理知识图谱地理实体及其方位信息较为完整,召回率和精确率较高,能够满足知识图谱构建需求,可充分表达现实世界中地理实体及其复杂的方位关系.
Research on the Construction Method of Geographic Knowledge Graph Based on BiLSTM-CRF and Bert-BiGRU-Attention Network
Geographic knowledge graph is a key technology to provide geographic knowledge services,and its automatic con-struction is of great significance for developing geographic artificial intelligence applications.In order to address the problem of auto-matic construction of geographic knowledge graph,a method is proposed to construct domain geographic knowledge graph based on BiLSTM-CRF network for extracting geographic entities and Bert-BiGRU-Attention network for extracting orientation relations.The experimental results show that the entities and their orientation information in geographic knowledge graph constructed based on the proposed method are relatively complete with high recall and precision.The method proposed in this paper can meet the require-ments of graph construction and can fully describe the geographic entities and their complex orientation relationships in the real world.

geographic knowledge graphBiLSTM-CRFgeographic entitiesBert-BiGRU-Attentionorientation relation-ships

任延辉、苗立志、黄毅、汤晟、张朋东

展开 >

南京邮电大学地理与生物信息学院 南京 210023

江苏省智慧健康大数据分析与位置服务工程研究中心 南京 210023

地理知识图谱 BiLSTM-CRF 地理实体 Bert-BiGRU-Attention 方位关系

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(10)