首页|基于XLNet与双向注意力的机器阅读理解研究

基于XLNet与双向注意力的机器阅读理解研究

扫码查看
机器阅读理解目的是使机器能够阅读并准确理解一段自然语言文本,并回答给定的问题,具有很高的研究和应用价值.针对现有的通用领域机器阅读理解模型缺乏文档与问题的有效交互信息而导致准确率较低的问题,论文提出一种基于XLNet与双向注意力的阅读理解模型.该模型在嵌入层使用XLNet预训练语言模型生成具有上下文依赖的词向量对内容和问题分别进行序列表示,在编码层使用两层LSTM提取语义特征,在交互层使用两种双向注意力机制(Bi-Attention和Co-Attention)提取序列特征,再使用自注意力机制得到进一步增强的文本特征表示并进行向量融合,最后经过双向LSTM建模后输入输出层得到答案的开始和结束位置.通过在DuReader中文数据集中实验测试,结果表明EM和F1值均得到提升.
Research on Machine Reading Comprehension Based on XLNet and Bidirectional Attention
The purpose of machine reading comprehension is to enable the machine to read and accurately understand a natu-ral language text,and answer a given question,which has high research and application value.Aiming at the problem of low accura-cy due to the lack of effective interaction information between articles and questions in the existing universal domain machine read-ing comprehension models,this paper proposes a reading comprehension model based on XLNet and bidirectional attention.In this model,XLNet pretraining language model is used to generate context-dependent word vectors for sequential representation of con-tent and problem at the embedding layer,and two layers of LSTM are used to extract semantic features at the coding layer,and two bidirectional attention mechanisms(Bi-Attention and Co-Attention)are used to extract sequence features at the interaction layer,and then the self-attention mechanism is used to further enhance the representation of text features,and vector fusion is carried out.Finally,the start and end positions of the answers are obtained at the input and output layer after bidirectional LSTM modeling.Ex-perimental results in DuReader Chinese dataset show that EM and F1 values are improved.

machine reading comprehensionXLNetbidirectional AttentionLSTM

解红涛、牛甲奎

展开 >

东北石油大学计算机与信息技术学院 大庆 163318

机器阅读理解 XLNet 双向注意力 LSTM

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(10)