首页|基于改进R-FCN的行人检测算法

基于改进R-FCN的行人检测算法

扫码查看
针对现有行人检测算法中存在的类人物体误检为行人、小尺度行人的漏检及多个行人重叠时的漏检等问题,提出了一种改进的行人检测算法.基于R-FCN框架,结合行人检测的特殊需求,选择适合的主干网络,使之提取的行人特征更有区分度;引入可变形卷积,提升了行人不规则区域的特征提取能力,降低了类人物体误检为行人的概率;通过多路径检测结果融合,增加了检测框架对不同尺度行人的敏感性;改进了检测锚框,提高了锚框的生成质量;改进了非极大值抑制算法,改善了重叠区域行人漏检问题.实验结果表明,论文的算法在Caltech数据集上的精度高出原算法10.02%.
A Pedestrian Detection Algorithm Based on Improved R-FCN
An improved pedestrian detection algorithm is proposed to solve the problems of misdetection of humanoid objects as pedestrians,omission of small-scale pedestrians and omission of multiple pedestrians overlapping in existing pedestrian detec-tion algorithms.Based on R-FCN framework and combined with the special needs of pedestrian detection,the appropriate trunk net-work is selected to make the pedestrian features extracted more distinguishability.Deformable convolution is introduced to improve the feature extraction ability of irregular pedestrian areas and reduce the probability of misdetecting human-like objects as pedestri-ans.Through the fusion of multipath detection results,the sensitivity of the detection framework to pedestrians of different scales is increased.The detection anchor frame is improved and the generation quality of anchor frame is improved.The non-maximum sup-pression algorithm is improved to improve the problem of pedestrian omission in overlapping areas.Experimental results show that the accuracy of the proposed algorithm on Caltech data set is 10.02%higher than that of the original algorithm.

pedestrian detectionfusion of multipath detection resultsdeformable convolutionnon-maximum suppression algorithm

徐晓龙、何晓佳、方云、俞晓春、颜玉祥

展开 >

河海大学物联网工程学院 常州 213022

行人检测 多路径检测结果融合 可变形卷积 非极大值抑制算法

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)