首页|基于Faster-Rcnn-Fpn算法的口吃检测及其严重程度测评

基于Faster-Rcnn-Fpn算法的口吃检测及其严重程度测评

扫码查看
目前国内对口吃的检测主要是通过语言专家的主观测评,缺少智能且客观的口吃严重程度检测的医疗辅助工具.针对这一现象,论文基于UClass口吃语料库测评儿童口吃的严重程度,使用Faster-Rcnn-Fpn深度学习算法对语谱图进行检测.实验结果表明,该模型能有效检测口吃的语音重复,延长和感叹词类型,并根据其持续时间以计算出语言效率评分(SES)来表示口吃的严重程度,有望成为计算和分析口吃严重程度的医疗辅助工具,便于尽早发现儿童口吃障碍,有助于儿童身心健康发展.
Stuttering Detection and Severity Assessment Based on Faster-Rcnn-Fpn Algorithm
At present,the detection of stuttering in China is mainly through the subjective evaluation of language experts,and there is a lack of intelligent and objective medical aids to detect the severity of stuttering.In response to this phenomenon,this pa-per evaluates the severity of children's stuttering based on the UClass stuttering corpus,and uses the Faster-Rcnn-Fpn deep learn-ing algorithm to detect the spectrogram.The experimental results show that the model can effectively detect stuttering speech repeti-tion,prolongation and interjection types,and calculate the language efficiency score(SES)according to its duration to express the severity of stuttering.It is expected to become a medical auxiliary tool for calculating and analyzing the severity of stuttering,which is convenient for early detection of children's stuttering disorder and helps children's physical and mental development.

deep learningFaster-Rcnn-Fpn algorithmstutteringobject detectionspectrogram recognition

蔡雨成、潘文林

展开 >

云南民族大学电气信息工程学院 昆明 650000

深度学习 Faster-Rcnn-Fpn算法 口吃 目标检测 语谱图识别

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)