首页|钢网存储系统设计及存储预检算法研究

钢网存储系统设计及存储预检算法研究

扫码查看
针对现有钢网存储系统管理性能不强以及对待存储钢网的检测效率较低的问题,提出了一种使用深度学习方法进行钢网存储预检的钢网存储系统.首先设计了一种基于CAN总线的钢网自动化存储系统,然后通过数据增强方法建立钢网数据集,最后在此基础上利用ResNet18模型和MobileNetV2模型基于迁移学习训练,以实现钢网存储预检.实验结果表明,钢网存储系统能够实现对钢网的自动化管理.同时,ResNet18模型应用于钢网存储预检的准确率达到98.45%,可以取代手工选择图像特征的工作.
Design of Stencil Storage System and Research on Pre-detection Algorithm for Storage
Aiming at the problems that the management performance of the existing stencil storage system is not strong and the detection efficiency of the storage stencil is low,a stencil storage system using deep learning method for pre-detection of the stencil is proposed.Firstly,an automatic system for stencil storage based on CAN bus is designed,and then the stencil data set is estab-lished by data enhancement method,and finally the ResNet18 model and MobileNetV2 model are used to train based on transfer learning to achieve pre-detection of stencil storage.Experimental results show that the stencil storage system can realize the automat-ic management of the stencil.At the same time,the ResNet18 model is applied to the pre-detection of stencil storage with an accura-cy rate of 98.45%,which can replace the work of manual selection of image features.

deep learningstenciltransfer learningconvolutional neural networks

陆加新、周杰

展开 >

南京信息工程大学电子与信息工程学院 南京 210044

日本国立新泻大学电气电子工学科 新泻 950-2181

深度学习 钢网 迁移学习 卷积神经网络

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)