首页|基于粒子群算法的供水系统优化调度研究

基于粒子群算法的供水系统优化调度研究

扫码查看
针对粒子群算法的改进做出研究,结合罚函数法的思想对自适应惯性粒子群算法做出了改进,在可行范围内给予最大惯性系数ω值,当粒子达到峰谷时,动态适应性地调低ω值,基于此特性更新了粒子群迭代公式。重点分析比较了四种测试函数下改进前后三种粒子群算法的最值和平均值数据,比较得出较适合该模型的粒子群算法,改进后的自适应惯性粒子群算法在收敛精度和速度上均得到了一定改善。并利用标准测试函数对改进前后的粒子群算法进行了分析比较,结果显示,改进后的粒子群优化算法的收敛速度和准确性得到提升,同时可以有效平衡全局搜索和局部搜索的能力。基于前期建立的优化调度模型,对水厂实际数据进行预测,并确定了优化调度方案。
Research on Optimal Scheduling of Water Supply System Based on Particle Swarm Algorithm
Research has been conducted on the improvement of particle swarm optimization algorithm,and the idea of penalty function method has been combined to improve the adaptive inertia particle swarm algorithm.The maximum inertia coefficient ω val-ue is given within the feasible range,and when the particles reach the peak valley,the ω value is dynamically adaptively lowered.Based on this characteristic,the particle swarm iteration formula has been updated.The focus is on analyzing and comparing the maximum and average data of three particle swarm optimization algorithms before and after improvement under four test functions.The particle swarm optimization algorithm that is more suitable for this model is compared,and the improved adaptive inertial parti-cle swarm optimization algorithm achieves certain improvements in convergence accuracy and speed.And the standard test function is used to analyze and compare the particle swarm optimization algorithm before and after improvement.The results show that the convergence speed and accuracy of the improved particle swarm optimization algorithm are improved,and it can effectively balance the ability of global search and local search.Based on the optimization scheduling model established in the previous stage,the actu-al data of the water plant is predicted,and the optimization scheduling plan is determined.

particle swarm algorithminertia coefficientconvergence performanceoptimal scheduling

杨化林、朱伶俐、薛皓、陈海周

展开 >

青岛科技大学机电工程学院 青岛 266061

粒子群算法 惯性系数 收敛性能 优化调度

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)