首页|基于极坐标表示与前景注意力机制的三维单目标跟踪

基于极坐标表示与前景注意力机制的三维单目标跟踪

扫码查看
目前主流的三维单目标跟踪方法是通过匹配模板与搜索区域的特征来跟踪目标,因而,模板和搜索区域的特征提取与匹配十分重要。但是,当前主流方法提取到的点云特征具有方向敏感性,会对后续的特征匹配以及检测产生不良影响。为了缓解上述问题,论文提出了基于极坐标表示与前景注意力机制的三维单目标跟踪网络。该模型通过极坐标空间变换帮助网络学习具有旋转不变性的点云特征。此外,前景点数量稀少会导致跟踪模型无法充分关注前景目标。为此,论文提出了前景权重增强模块,使得三维跟踪模型能更好地跟踪前景物体。论文在KITTI以及NuScenes数据集上进行的大量实验的结果表明,论文方法在汽车类别上,比基准方法分别提升了3。9%、7。6%与2。5%、8。0%的准确率与成功率。
3D Single Object Tracking Based on Polar Coordinate Representation and Foreground Attention Mechanism
The current mainstream method for 3D single-object tracking involves tracking the object by matching features be-tween a template and a search area,making feature extraction and matching of the template and search region crucial.However,point cloud features extracted by current mainstream methods exhibit orientation sensitivity,which can adversely affect subsequent feature matching and detection.To alleviate these issues,this paper proposes a 3D single-object tracking network based on polar co-ordinate representation and foreground attention mechanism.The model helps the network learn rotation-invariant point cloud fea-tures through polar coordinate space transformation.Moreover,the scarcity of foreground points can lead to the tracking model fail-ing to adequately focus on the foreground object.For this reason,a foreground weight enhancement module is proposed that enables the 3D tracking model to better track foreground objects.Extensive experiments conduct on the KITTI and NuScenes datasets demon-strate that our method achieves improvements of 3.9%,7.6%in precision and 2.5%,8.0%in success rate over baseline methods for the car category.

3d single object trackingpolar coordinate feature representationforeground attentiondeep learning

钟承鹏、宋慧慧

展开 >

南京信息工程大学江苏省大数据分析技术重点实验室大气环境与装备技术协同创新中心 南京 210044

三维单目标跟踪 极坐标特征表示 前景注意力 深度学习

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)