首页|基于跨相机间聚类对比的无监督行人识别

基于跨相机间聚类对比的无监督行人识别

扫码查看
无监督行人再识别在工业中由于过高的标签成本而越来越受到人关注,而大多数无监督REID工作是在不考虑摄像机间分布差异的情况下通过聚类对比特征间的相似度来生成伪标签,这会导致相机间标签的准确性降低,也就是训练后的模型不能保证很好地在从未见过的相机上部署,这问题大大地限制了重识别算法的应用。为了解决这个问题,论文提出了跨相机间的聚类对比(Camera-based Clustering Contrast),用基于相机间的实例批量处理归一模块(CIBN)将所有相机采集到的行人图像归一到子空间,缩小了相机之间的分布间隙,根据不同实验数据集对可调参数进行比例调整将IN和BN最佳化结合在一起,大大地提升了模型的泛化能力。其次结合了聚类对比,将预先计算的实例特征向量储存在内存中,使用聚类算法给它们分配伪标签,然后使用一种对比损失函数将查询实例与集群进行比较,最后更新字典。对比那些采用普通BN算法的无监督REID Pipeline,此方法达到了相当大的提升,在MarketDukeMSMT17数据集上,mAP对比最先进的纯无监督其他方法分别提高了7。4%,13。7%和8%。
Unsupervised Person-reidentification Based on Cross-camera Clustering Comparison
Unsupervised pedestrian re-identification has received increasing attention in industry due to its high label cost.However,most unsupervised REID works generate pseudo labels by clustering and comparing the similarity between features with-out considering the distribution differences between cameras.This can lead to a decrease in the accuracy of inter camera labels,meaning that the trained model cannot guarantee good deployment on cameras that have never been seen before.This problem great-ly limits the application of re-identification algorithms.In order to solve this problem,this paper proposes a camera based clustering contrast between cameras,which uses the instance batch processing normalization module(CIBN)based on cameras to normalize pedestrian images collected by all cameras into subspaces,narrow the distribution gap between cameras,and adjust the proportion of adjustable parameters according to different experimental data sets to combine IN and BN optimization,greatly improving the gen-eralization ability of the model.Secondly,combined with clustering comparison,the pre calculated instance feature vectors are stored in memory,and pseudo labels are assigned to them using clustering algorithms.Then,a comparison loss function is used to compare the query instances with the clusters,and finally the dictionary is updated.Compared with unsupervised REID Pipeline us-ing ordinary BN algorithm,this method achieves significant improvement.On the Market,Duke,and MSMT17 datasets,mAP has improved by 7.4%,13.7%,and 8%respectively compared to state-of-the-art pure unsupervised methods.

person re-identificationunsupervisedclustering comparisonpseudo label

符星、魏丹、罗一平

展开 >

上海工程技术大学机械与汽车学院 上海 201620

行人重识别 无监督 聚类对比 伪标签

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)