首页|基于双分支卷积神经网络的飞行动作识别方法

基于双分支卷积神经网络的飞行动作识别方法

扫码查看
飞行动作识别是飞行训练评估、飞行事故调查等领域的关键技术。针对现有识别方法通用性较弱、模型复杂、识别时间较长等问题,提出一种基于双分支卷积神经网络的飞行动作识别方法。利用运动分解的思想,将飞机的运动分解为水平和垂直两个分支上的运动,提取分支上的飞行特征参数,使用真实飞参数据对卷积神经网络模型进行训练、识别,再将这两个分支上的动作进行合成,实现飞行动作的识别。最终实验结果表明,采用该方法简化了识别过程,识别模型的通用性较强,识别方法准确率较高。
A Two-branch Convolutional Neural Network-based Approach to Flight Action Recognition
Flight action recognition is a key technology in the fields of flight training evaluation and flight accident investiga-tion.To address the problems of weak generality,complex model and long recognition time of existing recognition methods,a flight motion recognition method based on two-branch convolutional neural network is proposed.Using the idea of motion decomposition,the aircraft motion is decomposed into horizontal and vertical motions on two branches,and the flight feature parameters on the branches are extracted,and the convolutional neural network model is trained and recognized using the real flight parameters,and then the motions on these two branches are synthesized to realize the flight motion recognition.The final experimental results show that the use of this method simplifies the recognition process,the recognition model is more general,and the recognition method has a high accuracy rate.

convolutional neural networkflight action recognitionflight datamotion decomposition

潘龙飞、路晶、史宇

展开 >

中国民用航空飞行学院 广汉 618307

南京航空航天大学 南京 211106

卷积神经网络 运动分解 飞行参数 动作识别

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)