首页|多因素自适应栅格中的改进蚁群算法路径规划

多因素自适应栅格中的改进蚁群算法路径规划

扫码查看
栅格法作为路径规划领域中一种常见的建模方法,对于建模环境和栅格数量有着一定的要求,传统的栅格法无法平衡栅格数量与环境精度之间的矛盾,并且无法还原现实环境中复杂地形的问题。为解决上述问题,文章首先提出一种新型的多因素自适应栅格法建模,采用大小不等的栅格对复杂环境进行建模并保留不同地形的行驶复杂度以计算机器人的能耗。然后文章使用改进蚁群算法以路径长度和机器人总体能耗为目标在多因素自适应栅格建模地图上进行路径规划寻找最优路径,改进蚁群算法利用A*算法、人工势场法优化传统蚁群算法的收敛速度并避免蚂蚁走进凹陷区域造成死锁,通过路径优化使得路径平滑。实验结果表明改进蚁群算法在新型多因素自适应栅格建模地图上的路径规划不仅降低了模型中栅格的数量、能够保证对环境信息的高度还原,同时大幅提高了路径规划的收敛速度和收敛精度,而且该算法能够适用于各种地形环境。
Research on Path Planning of Improved Ant Colony Optimization in Multi-factor Adaptive Grid Model
As a common modeling method in the field of path planning,the grid method has certain requirements for the mod-eling environment and the number of grids.The traditional grid method cannot balance the contradiction between the number of grids and the accuracy of the environment,and cannot restore the complex terrain in the real environment.In order to solve the above problems,this paper firstly proposes a new multi-factor adaptive grid modeling method,which uses grids of different sizes to model complex environments and retains the driving complexity of different terrains to calculate the energy consumption of robots.Then,the article uses the improved ant colony optimization to find the optimal path on the adaptive grid modeling map with the path length and the overall energy consumption of the robot as the goal.The improved ant colony optimization uses A*algorithm and artificial po-tential field to optimize the convergence speed.It makes the path smooth through path optimization.The experimental results show that the path planning of the improved ant colony optimization on the new multi-factor adaptive grid modeling map greatly reduces the number of grids,ensures a high degree of restoration of environmental information,and greatly improves the convergence speed and convergence accuracy of path planning.Moreover,the algorithm can be applied to various terrain environments.

path planningmulti-factor adaptive grid modelA* algorithmartificial potential fieldimproved ant colony optimization

李泳科、湛文静

展开 >

南京理工大学计算机科学与工程学院 南京 210094

路径规划 多因素自适应栅格 A*算法 人工势场法 改进蚁群算法

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)