首页|基于改进Fi-GNN模型的CTR预估方法

基于改进Fi-GNN模型的CTR预估方法

扫码查看
点击率(CTR)预测是用户点击给定项目的概率,在推荐系统和在线广告中是至关重要的。针对大部分CTR预估模型都是隐式的建模特征交互模块,不能解释有意义的高阶特征组合,文中提出一种基于Fi-GNN改进模型的点击率预估方法(Fi-GNN-SKM)。首先针对基线模型邻接矩阵的表达能力不够灵活的问题,设计出更加灵活的邻接矩阵来区分不同节点的重要性。其次使用混合专家网络(MOE)聚合不同空间邻居节点的信息,得到更好的节点特征嵌入。最后对状态更新后的特征嵌入用深度神经网络继续捕捉高阶的特征组合并预测结果。相比Fi-GNN模型,在Criteo数据集中实验结果表明,Fi-GNN-SKM方法的AUC值提升了0。56%,LogLoss下降了0。51%;在Frappe数据集中实验结果表明,Fi-GNN-SKM方法的AUC值提升了0。37%,LogLoss下降了1。84%,说明了该方法的有效性。
CTR Prediction Method Based on Improved Fi-GNN Model
CTR prediction is the probability of users clicking on a given item.It is very important in recommendation system and online advertising.Most CTR prediction models are implicit modeling feature interaction modules,which can not explain mean-ingful high-order feature combinations.This paper proposes a click rate prediction method based on Fi-GNN improved model(Fi-GNN-SKM).For the problem that the expression ability of the adjacency matrix of the baseline model is not flexible enough,a more flexible adjacency matrix is designed to distinguish the importance of different nodes.Secondly,mixed network of experts(MOE)is used to aggregate the information of different spatial neighbor nodes to get better node feature embedding.Finally,for the feature embedding after state update,the deep neural network is used to continue to capture the high-order feature combination and predict the results.Compared with the Fi-GNN model,the experimental results in the Criteo data set show that the AUC value of the Fi-GNN-SKM method increases by 0.56%and the LogLoss decreases by 0.51%.The experimental results in Frappe data set show that the AUC value of Fi-GNN-SKM method increases by 0.37%and LogLoss decreases by 1.84%,which proves the effectiveness of this method.

CTR predictionadjacency matrixmixed network of expertsdeep neural network

夏义春、李汪根、李豆豆、葛英奎、王志格

展开 >

安徽师范大学计算机与信息学院 芜湖 241002

点击率预测 邻接矩阵 混合专家网络 深度神经网络

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)