首页|融合Bi-LSTM和CNN输出特征的短文本情感分析模型

融合Bi-LSTM和CNN输出特征的短文本情感分析模型

扫码查看
对于短文本情感分析任务,短文本的语言表达简短、语义稀疏、携带的特征少,一般的网络模型从短文本中学习到的语义特征不足。针对上述问题,论文提出一种融合Bi-LSTM和CNN输出特征的短文本情感分析模型。通过Bi-LSTM和CNN分别对文本表示进行特征提取,然后将Bi-LSTM层得到的含有上下文语义特征和CNN层得到的深层次的抽象语义特征进行融合作为最终的分类特征,最后在谭松波酒店评论语料和SST-2语料上验证了该模型的有效性。
A Short Text Sentiment Analysis Model Integrating Output Features of Bi-LSTM and CNN
For short text sentiment analysis tasks,short texts have short language expressions,sparse semantics,and carry few features,and general network models learn insufficient semantic features from short texts.In response to the above problems,this paper proposes a short text sentiment analysis model that fuses the output features of Bi-LSTM and CNN.The text representa-tion is extracted by Bi-LSTM and CNN respectively,and then the contextual semantic features obtained by the Bi-LSTM layer and the deep abstract semantic features obtained by the CNN layer are fused as the final classification features.Finally,the effectiveness of the model is verified on the review corpus in Tan Songbo Hotel and the SST-2 corpus.

sentiment analysisCNNBi-LSTM

黄军、许晓东

展开 >

江苏大学计算机科学与通信工程学院 镇江 212013

情感分析 CNN Bi-LSTM

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)