首页|融合知识图谱信息的细粒度交互问答模型

融合知识图谱信息的细粒度交互问答模型

扫码查看
现有的融合知识图谱的答案选择模型将问答对中的词及对应的知识实体通过注意力机制压缩成两个向量,据此计算问答对的匹配程度,没有很好地利用问答对之间细粒度的交互信息。因此,论文提出了融合知识图谱信息的细粒度交互问答模型,从句级别粗粒度和词级别细粒度两个角度出发,更好地利用了细粒度信息,从而提升模型的匹配效果。最后在通用英文数据集TrecQA和中文医疗数据集cMedQA2上验证了模型的有效性。
A Fine-grained Interactive Question Answering Model Fused with Knowledge Graph Information
The existing answer selection model fused with knowledge graph compresses the words in the question and answer pairs and the corresponding knowledge entities into two vectors through the attention mechanism,and then calculates the matching degree of the question and answer pairs,which does not make good use of the fine-grained interaction information between ques-tion-answer pairs.Therefore,this paper proposes a fine-grained interactive question answering model that integrates knowledge graph information.From the perspectives of sentence-level coarse-grained and word-level fine-grained,which makes better use of fine-grained information,thereby improving the matching effect of the model.Finally,the effectiveness of the model is verified on the general English dataset TrecQA and the Chinese medical dataset cMedQA2.

deep learningnatural language processingquestion and answer matchingknowledge graph

钱振飞、许晓东

展开 >

江苏大学计算机科学与通信工程学院 镇江 212013

深度学习 自然语言处理 答案匹配 知识图谱

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)