首页|基于双向注意力机制的新闻评论情感分析方法

基于双向注意力机制的新闻评论情感分析方法

扫码查看
在以往的新闻评论类情感分析任务中,分析方法主要集中在评论文本的特征提取和优化,忽略了新闻文本对评论理解的补充作用。因此论文提出了一种基于双向主意力机制的情感分析模型来建立新闻文本与评论间的联系,丰富评论的语义背景,提高情感分析效果。通过双向门控循环神经网络获取新闻文本与评论文本的上下文特征,在双向注意力层通过计算新闻文本与评论的相关度矩阵获得新闻到评论与评论到新闻的双向注意力,在输出层得到情感分析结果。在与双向门控循环神经网络的对比试验中,增加双向注意力层的模型情感多分类效果提升了4。7%,相较其他主流模型的多分类效果也有一定程度的提升,证明了该方法在新闻评论情感分析中的有效性。
Sentiment Analysis Method of News Comment Based on Bidirectional Attention Mechanism
In the previous task of news comments sentiment analysis,the analysis method mainly focuses on the feature extrac-tion and optimization of comments,ignoring the complementary role of news on comments understanding.Therefore,a sentiment analysis model based on bidirectional attention mechanism is proposed to establish the connection between news and comments,en-rich the semantic background of comments,and improve the effect of sentiment analysis.The contextual features of news and com-ments are extracted through the bidirectional gated recurrent neural network,and the bidirectional attention of news to comments and comments to news is generated by calculating the correlation matrix of news and comments in the bidirectional attention layer,the results are generated in the output layer.In the comparison experiment with the bidirectional gated recurrent neural network,the model with bidirectional attention layer increases by 4.7%in the sentiment multi-classification,which also improves to a certain ex-tent in the multiple classification effect compared to other mainstream models,which proves the effectiveness of this method in the sentiment analysis of news commentary.

news commentarysentiment analysisbidirectional attention mechanismpseudo-labelling

袁文昌

展开 >

武汉邮电科学研究院 武汉 430070

南京烽火天地通信科技有限公司 南京 210019

新闻评论 情感分析 双向注意力机制 伪标签法

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)