首页|基于卷积神经网络的固定翼无人机故障诊断研究

基于卷积神经网络的固定翼无人机故障诊断研究

扫码查看
由于固定翼无人机系统执行器长期处于高温、高压、强干扰、强冲击等复杂环境,其故障特征往往具有复杂性、层次性、相关性、不确定性。因此,针对固定翼无人机执行器故障,论文提出基于卷积神经网络的故障诊断方法,与传统故障诊断方法相比,具有更强大的特征学习和特征表达能力。实验结果表明,基于卷积神经网络的固定翼无人机故障诊断方法,能准确可靠地判断多种执行器的故障类型,有效地提升了固定翼无人机执行任务的安全性。
Research on Fault Diagnosis of Fixed Wing Unmanned Aerial Vehicles Based on Convolutional Neural Networks
Due to the high temperature,high pressure,strong interference,strong impact and other complex environment of fixed-wing UAV system actuator for a long time,its fault characteristics are often complex,hierarchical,correlation and uncertain-ty.Therefore,a fault diagnosis method based on convolutional neural network is proposed in this paper for actuator faults of fixed-wing UAV.Compared with traditional fault diagnosis methods,it has stronger feature learning and feature expression capabili-ties.The experimental results show that the fault diagnosis method of fixed-wing UAV based on convolutional neural network can ac-curately and reliably judge the fault types of various actuators,and effectively improve the task security of fixed-wing UAV.

fixed wing UAVconvolutional neural networkfault diagnosisdeep learning

罗瑞士、李少波、张安思、张仪宗

展开 >

贵州大学机械工程学院 贵阳 550025

贵州大学省部共建公共大数据国家重点实验室 贵阳 550025

固定翼无人机 卷积神经网络 故障诊断 深度学习

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)