首页|基于梯度提升树的多类运动想象脑电信号识别

基于梯度提升树的多类运动想象脑电信号识别

扫码查看
论文针对运动想象脑电信号的四分类问题,首先采用小波包分解和共空间模式的方法进行特征提取,随后运用梯度提升决策树的分类方法对提取到的特征进行分析。梯度提升决策树可以灵活处理各种离散值和连续值的数据,并且不需要对数据进行归一化处理,还能够直接进行特征组合并自然的处理各缺失值。通过与其他方法进行对比,实验结果中显示该方法的分类准确率为:0。913 7。实验结果说明该特征提取及分类方法的组合是有效且优异的。
Multi-lass Motion Image EEG Recognition Based on Gradient Lifting Tree
In this paper,to solve the four-way classification problem of motion image EEG signals,wavelet packet decomposi-tion and common space pattern are used to extract the features,and then gradient lifting decision tree classification is used to ana-lyze the extracted features.The gradient lifting decision tree can flexibly process data of various discrete values and continuous val-ues,and does not need to normalize the data,and can directly combine features and naturally process each missing value.Com-pared with other methods,the experimental results show that the classification accuracy of this method is 0.913 7.The experimental results show that the combination of feature extraction and classification method is effective and excellent.

gradient lifting decision treemotion image EEGwavelet decompositioncommon space model

程怡、郑威、徐雨

展开 >

江苏科技大学 镇江 212000

梯度提升决策树 运动想象脑电信号 小波分解 共空间模式

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)