首页|基于YOLOv5的无人机红外目标检测

基于YOLOv5的无人机红外目标检测

扫码查看
针对深度学习用于无人机目标检测参数量大、硬件平台受限的问题,提出了一种基于YOLOv5 网络的红外目标检测算法。首先,针对无人机拍摄目标较小的情况,将三尺度特征检测修改为双尺度特征检测,简化模型结构;利用DenseBlock模块、ECA注意力模块以及CIoU提高模型的检测精度。实验结果表明,相较YOLOv5s算法,改进算法在保证精度的前提下,模型参数量减小了25。2%,仅为 5。3M,该算法将无人机应用于公共安全领域具有参考价值。
Infrared Target Detection of UAV Based on YOLOv5
Aiming at the problems of large amount of parameters and limited hardware platform of deep learning for UAV tar-get detection,an infrared target detection algorithm based on YOLOv5 network is proposed.Firstly,aiming at the small shooting tar-get of UAV,the three-scale feature detection is modified to two-scale feature detection to simplify the model structure.The dense-block module,ECA attention module and CIoU are used to improve the detection accuracy of the model.The experimental results show that compared with the YOLOv5s algorithm,the improved algorithm reduces the number of model parameters by 25.2%and on-ly 5.3M on the premise of ensuring the accuracy.This algorithm has reference value for the application of UAV in the field of public safety.

UAVinfrared targettarget detectiondeep learning

鄢元霞、岳廷树、潘文林

展开 >

云南民族大学电气信息工程学院 昆明 650500

云南民族大学数学与计算机科学学院 昆明 650500

无人机 红外目标 目标检测 深度学习

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)