首页|基于混合注意力残差UNet的自监督MRI图像去噪方法

基于混合注意力残差UNet的自监督MRI图像去噪方法

扫码查看
MRI成像过程中存在大量不同类型的噪声,通常会影响医生对病情的判断。现有基于深度学习的MRI图像降噪方法需要配对图像训练网络,对噪声种类适应性差。论文提出一种融合混合注意力残差UNet的自监督MRI去噪方法。该方法首先利用近邻采样器从单噪声MRI图像下采样得到两张配对噪声图像,再利用混合注意力残差UNet网络深层提取图片特征,结合文中提及的重建损失函数与正则损失函数训练去噪网络。在Brainweb数据集进行上不同水平的高斯噪声与莱斯噪声测试,结果表明论文去噪方法与传统MRI图片去噪方法相比,高斯噪声去噪能力提升了4%。
Self-supervised MRI Image Denoising Method Incorporating Mixed-Attention Based on Residual UNet
There are many different types of noise during MRI imaging,which usually affects the doctor's judgment of the con-dition.Existing deep learning-based MRI image denoising methods require paired images to train the network,which has poor adaptability to noise types.In this paper,a self-supervised MRI image denoising method that incorporated a mixed-attention based residual UNet is proposed.The proposed method first uses a neighbor sampler to obtain two paired noisy images by down-sampling from a single noisy MRI image,then uses the mixed-attention residual UNet network to deeply extract image features.The denoising network is trained by combining the reconstruction loss function and the regularization loss function mentioned in the paper.Tests are deployed in different levels of Gaussian noise and Rician noise levels on Brainweb dataset,respectively.Results show that the denoising ability of this paper's method improves by 4%for Gaussian noise compared with conventional MRI image denoising meth-od.

MRI image denoisingresidual UNetmixed-attention mechanismself-supervised learning

李维乾、蒋良、杨卓琳

展开 >

西安工程大学计算机科学学院 西安 710048

MRI图像去噪 残差UNet 混合注意力机制 自监督学习

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)