首页|融合SURF和改进的AlexNet网络的表情识别算法

融合SURF和改进的AlexNet网络的表情识别算法

扫码查看
针对传统卷积神经网络在面部表情识别中特征信息提取不完善,分类效果不好,论文提出了一种将SURF算法与改进的AlexNet网络相结合的双通道表情识别算法。该方法以传统的AlexNet网络为基础,首先使用改进的AlexNet卷积神经网络对人脸图像进行特征点提取和特征描述,提取到的特征作为主要特征点部分,然后使用SURF算法提取面部特征作为次要特征点部分,对主要特征点部分进行补充,对参数变化进行分析;其次融合双通道提取的特征信息,实现优势互补;最后将融合得到的特征信息作为SVM分类器的输入进行分类,输出表情分类结果。该方法在Fer2013和CK+数据集上进行了实验,与以前的算法相比,其识别率分别提高了6。14%和6。51%。
Expression Recognition Algorithm Based on SURF and Improved AlexNet
In view of the imperfect feature information extraction and poor classification effect of traditional convolutional neu-ral network in facial expression recognition,a dual channel expression recognition algorithm combining SURF algorithm and im-proved AlexNet network is proposed in this paper.This method is based on the traditional AlexNet network.Firstly,the improved AlexNet convolutional neural network is used to extract and describe the feature points of the face image,and the extracted features are used as the main feature points.Then,the SURF algorithm is used to extract the facial features as the secondary feature points,supplement the main feature points and analyze the parameter changes.Secondly,the feature information extracted by two channels is fused to realize complementary advantages.Finally,the fused feature information is used as the input of SVM classifier to classify and output the expression classification results.This method is tested on Fer2013 and CK+data sets.Compared with the previous al-gorithms,its recognition rate is improved by 6.14%and 6.51%respectively.

hesse matrixSVMfeature extractiondual channel

高寒、陈伟

展开 >

云南民族大学电气信息工程学院 昆明 650031

黑塞矩阵 支持向量机 特征提取 双通道

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)