首页|融合残差模块的CT肺结节检测研究

融合残差模块的CT肺结节检测研究

扫码查看
CT是用于获取肺部图像的主要成像工具,论文针对CT检测肺结节灵敏度低的问题,提出一种融合残差模块的网络用于肺结节检测。首先使用ResNet替换U型网络的主干,灵活地添加了残差模块结构,使用跳跃连接更好地融合了上下文的特征信息,同时在一定程度上减少网络退化以及梯度消失问题;另外,在网络的输出层直接采用RPN产生的候选框作为输出结果,同时使用Soft-NMS对冗余框进行抑制,极大保留了结节的有效特征。在LUNA16数据集中验证了论文算法,CPM值达到了0。887,相对于其他三个模型分别提高了4。9%、1。7%、4。8%,肺结节检测的灵敏度得到了一定的提高,为临床检查提供理论参考。
Research on CT Pulmonary Nodule Detection Based on Residual Module
CT is the primary imaging tool for obtaining lung images.In view of the low sensitivity of CT detection of lung nod-ules,this paper proposes a network based on residual module for the detection of lung nodules.Firstly,ResNet is used to replace the backbone of the U-shaped network,and the residual blocks are flexibly added.The Shortcut Connections are used to better connect the feature information of the context,and at the same time,the problems of network degradation and gradient disappearance are re-duced partly.In addition,the region proposals generated by RPN are directly used as output results in the output layer of the net-work,and Soft-NMS is used to suppress the redundant frames,which greatly preserves the effective characteristics of the nodules.The proposed algorithm is verified in the LUNA16 datasets.The CPM value reaches 0.887,which is 4.9%,1.7%and 4.8%higher than those of the other three models respectively.The sensitivity of pulmonary nodule detection is improved to a certain extent,which provides a theoretical reference for clinical examination.

pulmonary nodule detection3D-CNNresidual connectiondeep learning

张悦、宋卫东、王志杰、张丰收

展开 >

河南科技大学医学技术与工程学院 洛阳 471000

肺结节检测 3D-CNN 残差连接 深度学习

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(11)