首页|基于改进RBPF的激光SLAM算法研究

基于改进RBPF的激光SLAM算法研究

扫码查看
为了解决移动机器人利用RBPF-SLAM算法构建全局地图中定位精度不足和粒子退化等问题,论文提出了一种改进的RBPF-SLAM算法。为了提高建图的精准度,将激光雷达的观测数据与里程计模型融合成混合提议分布。为了减缓粒子退化程度,在算法中引入了粒子群优化算法(PSO)来调整采样的粒子集,使粒子向似然高的区域移动,同时提出一种自适应局部线性重采样(ALLR)算法对粒子进行重采样操作。实验结果表明,改进的提议分布与结合PSO的ALLR重采样算法能有效减缓粒子退化速率,保留了粒子多样性,减小了计算量,提高了建图、定位精度和运行速度。
Research on SLAM Algorithm Based on Improved RBPF Laser
An improved RBPF-SLAM algorithm is proposed in this paper to solve the problems of insufficient positioning accu-racy and particle degradation in building global map by mobile robot using RBPF-SLAM algorithm.In order to improve the accuracy of mapping,the lidar observation data and odometer model are fused into a mixed proposed distribution.In order to slow down the degradation of particles,particle swarm optimization(PSO)algorithm is introduced to adjust the sampled particle set and make the particles move to the region with high likelihood.At the same time,an adaptive local linear resampling(ALLR)algorithm is pro-posed to resample the particles.The experimental results show that the improved proposed distribution and the ALLR resampling al-gorithm combined with PSO can effectively slow down the particle degradation rate,preserve the particle diversity,reduce the amount of calculation,and improve the mapping,positioning accuracy and running speed.

RBPF-SLAMmixed proposal distributionPSOALLR

王险峰、赵通

展开 >

东北石油大学计算机与信息技术学院 大庆 163318

RBPF-SLAM 混合提议分布 PSO ALLR

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(12)