首页|基于改进CenterNet的烟火检测智能监控系统

基于改进CenterNet的烟火检测智能监控系统

扫码查看
针对卷积神经网络计算效率和检测精度的矛盾性,论文提出了基于改进CenterNet的烟火检测算法。论文在CenterNet基础上引入轻量级架构MobileNetV3替换原始主干网络,在保证检测精度的前提下,缩减网络规模并提升移植性能。进一步,论文基于微服务的思想设计与开发海上平台烟火检测智能监控系统。该系统能够对海上油田作业现场视频监控流中出现的烟火进行实时检测并及时做报警处理。论文提出的改进CenterNet烟火检测算法,在烟火测试集的准确率为91。5%,均值平均精度为89。8%,相较于原始CenterNet目标检测模型,虽然准确率下降了0。3%,但是检测速度提高了30帧/秒,模型大小也降低了93 MB。同时论文开发的烟火检测智能监控系统在Tesla V100上测试能够满足海上平台实时处理并检测的应用需求。
Intelligent Monitoring System for Smoke and Fire Detection Based on Improved CenterNet
To address the contradictory nature of computational efficiency and detection accuracy of convolutional neural net-works,this paper proposes an improved CenterNet-based smoke and fire detection algorithm.This paper introduces a lightweight ar-chitecture MobileNetV3 based on CenterNet to replace the original backbone network,which reduces the network size and improves the portability while ensuring the detection accuracy.Further,this paper designs and develops an intelligent monitoring system for smoke and fire detection on offshore platforms based on the idea of microservices.The system can detect the smoke and fire in the video monitoring stream of the offshore oilfield operation site in real time and do alarm processing in time.The improved CenterNet smoke and fire detection algorithm proposed in this paper has an accuracy of 91.5%and a mean average accuracy of 89.8%in the smoke and fire test set,compared to the original CenterNet target detection model,although the accuracy decreases by 0.3%,the detection speed increases by 30 frames/s and the model size decreases by 93 MB.The system is tested on Tesla V100 and can meet the application requirements of real-time processing and detection on offshore platforms.

offshore oil fieldsmoke and fire detectionintelligent monitoring

孟祥海、张乐、陈征、蓝飞、张玺亮、徐元德、王威

展开 >

中海石油(中国)有限公司天津分公司 天津 300459

中海油能源发展股份有限公司工程技术分公司 天津 300452

海上油田 烟火检测 智能监控

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(12)