首页|基于几何结构损失的语义分割类别不平衡问题优化

基于几何结构损失的语义分割类别不平衡问题优化

扫码查看
在语义分割任务中,类别不平衡一直是一个具有挑战性的问题。为了解决此类问题,论文提出了一种基于几何结构损失的优化方法。针对少像素类别分割效果不佳的问题提出了几何结构损失函数。该损失函数首先利用模型的标签图信息提取类别间的几何结构信息,其中相同类的轮廓的像素数量之和作为类的轮廓周长,相邻类的相邻轮廓的像素数量之和作为类别间的邻接面积。然后通过动态平衡归一化操作,以轮廓周长作为图的结点信息,邻接面积作为节点的连接关系,将几何结构信息转换为有向图结构。最后计算预测标签和真实标签有向图的差异性得到具体的损失函数值,用于优化模型的参数学习。论文提出的几何结构损失函数,能够动态调整少像素类别对整体损失的贡献,更好地利用上下文结构信息,从而有效地提高模型的整体分割性能。
Optimization of Category Unbalanced Semantic Segmentation Based on Geometric Structure Loss
Category imbalance has been a challenging problem in semantic segmentation tasks.To solve such problems,an op-timization method based on geometric structure loss is proposed in this paper.The geometric structure loss function is proposed for the problem of poor segmentation of few-pixel categories.This loss function first extracts the geometric structure information between categories using the labeled graph information of the model,where the sum of the number of pixels of contours of the same class is used as the contour perimeter of the class,and the sum of the number of pixels of adjacent contours of neighboring classes is used as the adjacency area between categories.Then,the geometric structure information is converted into a directed graph structure by a dy-namic balanced normalization operation with the contour perimeter as the node information of the graph and the adjacency area as the connection relationship of the nodes.Finally,the discrepancy between the predicted labeled and real labeled directed graphs is calculated to obtain the specific loss function values,which are used to optimize the model for parameter learning.The geometric structure loss function proposed in this paper can dynamically adjust the contribution of pixel less categories to the overall loss and better utilize the contextual structure information,thus effectively improving the overall segmentation performance of the model.

semantic segmentationcategory imbalancegeometric structure lossdeep network

潘培文、王先兵、田乐、张滔、王艺斌、冷再安

展开 >

南京理工大学计算机科学与工程学院 南京 210094

湖南中烟常德卷烟厂 常德 415000

湖南省烟草公司 长沙 410000

南京焦耳科技有限责任公司 南京 210000

四川烟叶复烤有限责任公司 成都 610041

展开 >

语义分割 类别不平衡 几何结构损失 深度网络

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(12)