首页|基于深度学习的纯铁晶粒显微图像分割方法

基于深度学习的纯铁晶粒显微图像分割方法

扫码查看
金相分析是进行晶粒组织三维构建的重要手段,为精确、高效、快速实现晶粒的三维空间形貌计算测量与可视化,需要将其金相中的晶界提取出来。传统的机器学习与深度学习模型在提取过程中极其容易受到晶界模糊、消失与划痕等噪声干扰,导致无法精确提取晶界。论文提出了一种融合U-net和基于门循环单元(Conv Gate Recurrent Unit,convGRU)的卷积神经网络模型GAU-Net,目的在于解决传统卷积神经网络模型无法获取前后关联图片空间轨迹信息的问题。GAU-Net模型通过双模态映射输入,在保证原图片输入的同时又关联前图的时空特征。其利用模仿人脑思考的反馈机制,第二轮网络提取特征时会融合第一轮的高层次特征,并且基于特征图尺寸进行不同类型的多维度特征融合,在避免图像特征流失的情况下实现了模型轻量化。实验结果表明,对于纯铁晶粒切片数据集,相较于其他经典模型算法,论文方法能够在复杂的噪声背景下更为精确的分割晶界。
Microscopic Image Segmentation of Pure Iron Grains Based on Deep Learning
Metallographic analysis is an important means of 3D construction of grain structure.To realize the calculation,mea-surement and visualization of the 3D spatial morphology of grains accurately,efficiently and quickly,it is necessary to extract the grain boundaries in the metallographic structure accurately.Traditional machine learning and deep learning models are extremely susceptible to noise interference such as grain boundary blurring,disappearance,and scratches during the extraction process,re-sulting in the inability to accurately extract grain boundaries.This paper proposes a convolutional neural network model GAU-Net that fused U-net and Conv Gate Recurrent Unit(convGRU).It aimes to solve the problem that the traditional convolutional neural network model cannot obtain the spatial trajectory information of the related pictures.The GAU-Net model ensures the input of the original image and correlates the high-level features of the temporal and spatial domains of the previous image by dual image map-ping.It uses a feedback mechanism that imitates human brain thinking.When the second round of network extracted features,the high-level features of the first round would be fused,and different types of feature fusion would be performed based on the size and dimension of the feature map.Model lightweighting is achieved while avoiding image feature loss.The findings show that,for the pure iron grain slice dataset,compared with other classical model algorithms,the method in the paper can accurately segment the grain boundaries in the complex environment.

grader extractiondual mode picture mappingspatial and space characteristicsmulti-dimensional feature fu-sionmodel lightweight

卜树川、程科

展开 >

江苏科技大学计算机学院 镇江 212100

晶界提取 双模态映射 时空特征 多维度特征融合 模型轻量化

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(12)