首页|基于柔性跨层连接和自注意力机制的道路检测方法

基于柔性跨层连接和自注意力机制的道路检测方法

扫码查看
自注意力机制是当前提升道路检测精度的重要方法之一。自注意力机制相比注意力机制,减少了对外部信息的依赖,使其拥有更强的数据捕捉能力。Non-local网络在计算两个位置之间的响应时会考虑所有维度特征图的权重,但随之而来的就是计算量的增大。SENet通过挤压和激发操作获得了具有全局感受野的权重矩阵,但是SENet对道路边缘的拟合能力有限。论文设计了一个新的自注意力模块在不增加过多计算量的情况下,通过卷积和矩阵乘法来压缩不同维度上的信息,以获取更多全局信息。并在编码器和解码器之间引入了柔性跨层连接,提升了网络性能。损失函数方面,在常用交叉熵损失函数的基础上引入了BCD(Bray Curtis Distance)和Hinge loss。通过对道路边缘附近判定错误的点给与更高的惩罚,使网络具有更好的拟合道路边缘的能力。通过实验证明论文方法检测精度高于Non-local和SENet。
Road Detection Method Based on Soft Cross-layer Connection and Self Attention
Self attention is one of the important methods to improve the accuracy of road detection.Compared with attention mechanism,self attention reduces the dependence on external information and makes it have stronger data capture ability.When cal-culating the response between two locations,Non-local network will consider the weight of all dimensional feature graphs,but the amount of calculation will increase.SENet obtains the weight matrix with global receptive field through extrusion and excitation,but the fitting ability of SENet to road edge is limited.A new self attention module is designed to compress the information in different di-mensions by convolution and matrix multiplication without increasing too much computation,so as to obtain more global informa-tion.Flexible cross layer connection is introduced between encoder and decoder to improve network performance.In terms of loss function,BCD(Bray Curtis distance)and hinge loss are introduced based on the common cross entropy loss function.By giving higher punishment to the wrong points near the road edge,the network has the ability to better fit the road edge.Experiments show that the detection accuracy of this method is higher than that of Non-local net and SENet.

self attentionroad detectionfeature mapsoft cross-layer

金鑫、陈雪云

展开 >

广西大学电气工程学院 南宁 530000

自注意力 道路检测 特征图 柔性跨层连接

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(12)