首页|从频域角度防御隐形后门攻击

从频域角度防御隐形后门攻击

扫码查看
使用第三方模型进行图像识别时,存在受到隐形后门攻击的威胁,而目前的防御研究集中于像素域与训练阶段.针对这种情况,提出基于高斯滤波的后门防御方法.该方法从频域角度切入并在预处理阶段进行防御,首先通过对隐形后门攻击进行频域特性研究,分析出触发器位于图像高频信息区域,然后对于不同种类的攻击,在模型预测阶段引入高斯滤波器进行防御实验.实验结果表明,该方法将隐形后门攻击的攻击成功率降低至10%以内.
Defending Against Invisible Backdoor Attacks from the Aspect of Frequency Domain
When using third-party models for image recognition,there is a threat of invisible backdoor attacks,and the cur-rent defense research is focused on the pixel domain and training phase.In view of this,a backdoor defense method based on Gauss-ian filtering is proposed.The method starts from the frequency domain and defends in the pre-processing stage.Firstly,the invisible backdoor attack is studied in the frequency domain,and the trigger is analyzed to be located in the high frequency information re-gion of the image.Experimental results show that the method reduces the attack success rate of invisible backdoor attack to within 10%.

backdoor defensesinvisible backdoor attacksfrequency domainimage recognition

马俊智、丁建军、苏通、朱勇杰、孙超

展开 >

江汉大学智能制造学院 武汉 430056

江汉大学精细爆破国家重点实验室 武汉 430056

后门防御 隐形后门攻击 频域 图像识别

2024

计算机与数字工程
中国船舶重工集团公司第七0九研究所

计算机与数字工程

CSTPCD
影响因子:0.355
ISSN:1672-9722
年,卷(期):2024.52(12)