首页|基于机器视觉的景区火灾检测方法

基于机器视觉的景区火灾检测方法

A Machine Vision Based Fire Detection Method for Scenic Areas

扫码查看
随着人类活动的增加和全球气候变化,火灾事故在自然景区内发生的频率越来越高.为了及时发现和处理火灾,提出了一种基于机器视觉的景区火灾检测方法.通过空中无人机和地面视频监控设施收集景区的实时图像,采用卷积神经网络(Convolutional Neural Network,CNN)的深度学习模型对图像进行分析,用以检测火灾的发生.研究采用了轻量级的神经网络SqueezeNet、ShuffleNet、MobileNet_v2 以及ResNet-50 进行火灾识别.为了模拟九寨沟景区实地情况,选择复杂度较低的检测算法,还进行了跨数据集识别评估,并将其与复杂度较高的ResNet-50 进行了比较,最终得出通过基于ResNet-18 进行图像语义分割的方法,识别结果的分类准确率达到 96%,验证了方法具有更好的鲁棒性.
With the increase of human activities and global climate change,the frequency of fire accidents in natural scenic areas is higher than before.In order to detect and handle fires in time,a machine vision based fire detection method is proposed for scenic areas.Firstly,the real time images of the scenic areas are collected through aerial drones and ground video monitoring facilities.Then,the deep learning model of the Convolutional Neural Network(CNN)is used to analyze the images to detect the occurrence of fire.The lightweight neural networks,such as SqueezeNet,ShuffleNet,MobileNet_v2 and ResNet-50,are used for fire identification.In order to simulate the actual situation of Jiuzhaigou Valley Scenic and Historic Interest Area and select the detection algorithm with lower complexity,the identification evaluation across the dataset is also conducted,and it is compared with ResNet-50 of higher complexity.Finally,through the method of image semantic segmentation based on ResNet-18,the classification accuracy of the identification results reached 96%,showing that the method has better robustness.

fire detectionmachine visiondeep learningCNN

汤云超、周翰、邢秀青、刘占勇

展开 >

中华通信系统有限责任公司,北京 100089

河北地质大学 城市地质与工程学院,河北 石家庄 050031

中车唐山机车车辆有限公司,河北 唐山 064099

火灾检测 机器视觉 深度学习 卷积神经网络

2024

计算机与网络
工业和信息化部电子无线通信专业情报网

计算机与网络

CHSSCD
影响因子:0.149
ISSN:1008-1739
年,卷(期):2024.50(2)
  • 12