首页|基于能量损失的Transformer神经网络信息流序列推荐算法

基于能量损失的Transformer神经网络信息流序列推荐算法

Recommendation Algorithm of Transformer Neural Network Information Flow Sequence Based on Energy Loss

扫码查看
随着信息流和互联网的迅猛发展,网络越发成为人们获取信息的主要来源.有效提升用户浏览信息的效率,准确推送用户关注的个性化内容,成为当前的热门需求.利用Python爬取了平台一周时间内用户在信息流产品上的曝光历史,对数据进行处理和分析.引入Transformer深度神经网络模型和最相似用户估计模型并将其融合来预测用户浏览各个内容的点击率和浏览时长,模型解释性增强,且对不同顺序的推荐序列偏好更敏感.
With the rapid development of the Internet and information flow,the Internet has increasingly become the main information source for people.C Improving the efficiency of information browsing,accurately pushing personalized content to users who are interested in have become a hot demand at present.First,Python is used to obtain the one-week exposure history of users on a platform in information flow products,and the data is then processed and analyzed.The Transformer deep neural network model and the most similar user estimation model are introduced and combined together to predict the click rate and duration of users browsing each content.Finally,the model's explanatory nature is enhanced,and it is proved to be more sensitive to the preference of recommendation sequences in different orders.

recommendation algorithmTransformerneural networkthe most similar userssequence evaluation

黄驰涵

展开 >

南京理工大学 设计艺术与传媒学院,江苏 南京 210094

推荐算法 Transformer 神经网络 最相似用户 序列评估

2024

计算机与网络
工业和信息化部电子无线通信专业情报网

计算机与网络

CHSSCD
影响因子:0.149
ISSN:1008-1739
年,卷(期):2024.50(2)
  • 18