首页|一种水下潜航器的导航定位技术

一种水下潜航器的导航定位技术

扫码查看
随着全球海洋战略的推进及各国数字化海洋的建设发展,水下无人潜航器(Unmanned-Underwater Vehicle,UUV)日益成为大国水下作战、军事侦察、深海勘测的重要手段,而实时精准的水下定位技术是UUV完成水下任务的必要前提和关键保障.受海洋复杂环境影响,全球导航卫星系统(Global Navigation Satellite System,GNSS)等传统定位方法无法使用.探索一种高可靠的、高精度水下无人定位技术成为当前研究的热点.基于惯性导航技术、超短基线(Ultra-Short Baseline,USBL)水声定位技术及组合协同定位技术,提出了一种UUV和水面无人艇(Unmanned Surface Vehicle,USV)的协同导航定位方法.采用基于粒子群优化(Particle Swarm Optimization,PSO)算法的声速修正技术提高水声定位精度,进而根据建立的状态空间模型进行Kalman滤波估计,得到优化后的UUV定位结果.该方法创造性地对UUV应答器点位进行了优化部署,可实现误差数据、故障数据的有效识别和自动剔除,提升了系统定位的连续性、稳定性和可靠性.实验结果表明,优化后的定位精度可达 2.15 m.
A Navigation and Positioning Technology of UUV
With the promotion of global ocean strategy and the development of digital ocean technology,the Unmanned Underwater Vehicle(UUV)is increasingly becoming a crucial means for major powers to compete in relevant areas,such as underwater warfare,military reconnaissance and deep ocean survey.And the real-time and precise underwater positioning technology is the prerequisite and insurance for ocean task execution.Affected by the complicated marine environment,the traditional positioning methods such as the Global Navigation Satellite System(GNSS)cannot be used.So how to explore an underwater unmanned positioning technology of high reliability and high precision has become the focus of current research.Based on inertial navigation technique,Ultra-Short Baseline(USBL)positioning underwater acoustic positioning technology,and collaborative positioning technology,a collaborative navigation and positioning method of UUV and Unmanned Surface Vehicle(USV)is proposed.A sound speed correction technique based on Particle Swarm Optimization(PSO)algorithm is adopted to improve underwater acoustic positioning accuracy.Then Kalman filtering estimation is carried out according to the established state space model.Accordingly,the optimized UUV positioning result will be achieved.The method creatively optimizes the location of UUV transponders,which can effectively identify and automatically eliminate error data and fault data,and improve the continuity,stability and reliability of system positioning.The simulation results show that the optimized positioning accuracy can achieve 2.15 m.

UUVcollaborative positioning and navigationUSBLPSO algorithmKalman filtering

张国利

展开 >

中国人民解放军92941部队,辽宁 葫芦岛 125001

水下无人潜航器 协同导航定位 超短基线 粒子群优化算法 卡尔曼滤波

2024

计算机与网络
工业和信息化部电子无线通信专业情报网

计算机与网络

CHSSCD
影响因子:0.149
ISSN:1008-1739
年,卷(期):2024.50(3)
  • 15