首页|基于深度强化学习的行动推演决策系统设计

基于深度强化学习的行动推演决策系统设计

扫码查看
针对特定行动决策无法快速获取最优策略问题,提出了一种基于深度强化学习的综合性决策优化机制.通过量化评估行动方案的效果、代价、风险、时效等多元性能,进行权重分配和聚类分析的专家决策融合,并利用强化学习的最大化累积奖励机制评估行动成功概率、战果战损比等要素,实现快速匹配特征矩阵并优选最佳预案,从而显著提升行动决策的速度和准确性,具有重大工程应用价值.
Design of Action Deduction and Decision System Based on Deep Reinforcement Learning
A comprehensive strategy optimization mechanism based on deep reinforcement learning is proposed,in order to address the problem of the inability to quickly obtain the optimal strategy for specific action decisions.By quantitatively evaluating the performance of the effectiveness,cost,risk and timeliness of action plans,expert decision-making fusion is conducted through weight allocation and clustering analysis.The maximum cumulative reward mechanism of reinforcement learning is leveraged to evaluate factors such as the success probability of actions and the battle loss ratio of results,which enables fast matching of feature matrices and optimization of the best plan,significantly improving the speed and accuracy of action decision-making and showing important engineering application value.

deep learningaction deductionintelligent assessmentexpert decision-making

刘晶、李兴力、张睿、贾新潮

展开 >

中国电子科技集团公司第五十四研究所,河北石家庄 050081

中华通信系统有限责任公司河北分公司,河北石家庄 050081

河北省智能化信息感知与处理重点实验室,河北石家庄 050081

深度学习 行动推演 智能评估 专家决策

河北省智能化信息感知与处理重点实验室发展基金

SXX22138X002

2024

计算机与网络
工业和信息化部电子无线通信专业情报网

计算机与网络

CHSSCD
影响因子:0.149
ISSN:1008-1739
年,卷(期):2024.50(4)