计算机与现代化2024,Issue(1) :80-86.DOI:10.3969/j.issn.1006-2475.2024.01.013

一种面向微控制器上环境声音分类的DNN压缩方法

A DNN Compression Method for Environmental Sound Classification on Microcontroller Unit

孟娜 方维维 路红英
计算机与现代化2024,Issue(1) :80-86.DOI:10.3969/j.issn.1006-2475.2024.01.013

一种面向微控制器上环境声音分类的DNN压缩方法

A DNN Compression Method for Environmental Sound Classification on Microcontroller Unit

孟娜 1方维维 1路红英1
扫码查看

作者信息

  • 1. 北京交通大学计算机与信息技术学院,北京 100044
  • 折叠

摘要

环境声音分类(Environmental Sound Classification,ESC)是非语音音频分类任务最重要的课题之一.近年来,深度神经网络(Deep Neural Network,DNN)方法在ESC方面取得了许多进展.然而,DNN是计算和存储密集型的,无法直接部署到基于微控制器(Microcontroller Unit,MCU)的物联网设备上.针对这一问题,本文提出一种用于资源高度受限设备的DNN压缩方法.由于DNN模型参数规模较大无法直接部署,因此提出使用剪枝方法进行大幅压缩,并针对该操作带来的精度损失问题,设计一种基于模型中间层特征信息的知识蒸馏方法.基于STM32F746ZG设备在公开的数据集(UrbanSound8K、ESC-50)上进行测试,实验结果表明,本文方法能够获得高达97%的压缩率,同时保持良好的推理精度和速度.

Abstract

Environmental Sound Classification(ESC)is known as one of the most important topics of the non-speech audio clas-sification task.In recent years,deep neural networks(DNNs)have made a lot of progress in ESC.However,DNNs are computa-tionally and memory-intensive,and cannot be directly deployed on IoT devices based on microcontroller units(MCU).To ad-dress this problem,this paper proposes a DNN compression method for highly resource-constrained devices.Since DNNs have a large number of parameters,which cannot be directly deployed,so this paper proposes to use the pruning method for substantial compression.Afterwards,aiming at the problem of accuracy loss caused by this operation,we design a knowledge distillation based on the feature information of multiple intermediate layers.Tests are carried out on public datasets(UrbanSound8K,ESC-50)using the STM32F746ZG device.The experimental results demonstrate that proposed method can achieve up to 97%com-pression rate while maintaining good inference performance and speed.

关键词

环境声音分类/边缘计算/微控制器/剪枝/知识蒸馏/量化

Key words

environmental sound classification/edge computing/microcontroller unit/pruning/knowledge distillation/quanti-zation

引用本文复制引用

出版年

2024
计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
参考文献量37
段落导航相关论文