首页|一种面向微控制器上环境声音分类的DNN压缩方法

一种面向微控制器上环境声音分类的DNN压缩方法

扫码查看
环境声音分类(Environmental Sound Classification,ESC)是非语音音频分类任务最重要的课题之一.近年来,深度神经网络(Deep Neural Network,DNN)方法在ESC方面取得了许多进展.然而,DNN是计算和存储密集型的,无法直接部署到基于微控制器(Microcontroller Unit,MCU)的物联网设备上.针对这一问题,本文提出一种用于资源高度受限设备的DNN压缩方法.由于DNN模型参数规模较大无法直接部署,因此提出使用剪枝方法进行大幅压缩,并针对该操作带来的精度损失问题,设计一种基于模型中间层特征信息的知识蒸馏方法.基于STM32F746ZG设备在公开的数据集(UrbanSound8K、ESC-50)上进行测试,实验结果表明,本文方法能够获得高达97%的压缩率,同时保持良好的推理精度和速度.
A DNN Compression Method for Environmental Sound Classification on Microcontroller Unit
Environmental Sound Classification(ESC)is known as one of the most important topics of the non-speech audio clas-sification task.In recent years,deep neural networks(DNNs)have made a lot of progress in ESC.However,DNNs are computa-tionally and memory-intensive,and cannot be directly deployed on IoT devices based on microcontroller units(MCU).To ad-dress this problem,this paper proposes a DNN compression method for highly resource-constrained devices.Since DNNs have a large number of parameters,which cannot be directly deployed,so this paper proposes to use the pruning method for substantial compression.Afterwards,aiming at the problem of accuracy loss caused by this operation,we design a knowledge distillation based on the feature information of multiple intermediate layers.Tests are carried out on public datasets(UrbanSound8K,ESC-50)using the STM32F746ZG device.The experimental results demonstrate that proposed method can achieve up to 97%com-pression rate while maintaining good inference performance and speed.

environmental sound classificationedge computingmicrocontroller unitpruningknowledge distillationquanti-zation

孟娜、方维维、路红英

展开 >

北京交通大学计算机与信息技术学院,北京 100044

环境声音分类 边缘计算 微控制器 剪枝 知识蒸馏 量化

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(1)
  • 37