首页|基于知识图谱的多目标可解释性推荐

基于知识图谱的多目标可解释性推荐

扫码查看
现有的推荐系统研究大多集中在如何提高推荐的精度上,而忽略了推荐的可解释性.为了最大程度地提高用户对推荐项的满意度,提出一种基于知识图谱的多目标可解释性推荐模型,同时优化推荐的准确性、新颖性、多样性和可解释性.首先通过知识图谱得到用户可解释的候选列表,并利用统一的方法以目标用户的交互项和推荐项之间的路径作为解释依据对推荐的可解释性进行量化,最后通过多目标优化算法对可解释的候选列表进行优化,得到最终的推荐列表.在Movielens和Epinions数据集上的实验结果表明,本文所提出的模型可以在不降低准确性、新颖性和多样性的情况下提高推荐的可解释能力.
Multiple Objective Explainable Recommendation Based on Knowledge Graph
Most of the existing recommendation system research focuses on how to improve the accuracy of recommendation,but neglects the explainability of recommendation.In order to maximize the satisfaction with recommendation items of users,a multi-objective explainable recommendation model based on knowledge graph is proposed to optimize the accuracy,novelty,diversity and explainability of recommendations.Firstly,the explainable candidate list of users is obtained by knowledge graph,and the explainable candidate list is quantified by using a unified method based on the path between the interaction item and the recom-mendation item of target users.Finally,the explainable candidate list is optimized by multi-objective optimization algorithm,and the final recommendation list is obtained.The experimental results on the dataset of Movielens and Epinions show that the pro-posed model can improve the explainability of recommendations without compromising accuracy,novelty,and diversity.

knowledge graphrecommendation systemexplainabilitymulti-objective optimization

杨孟、杨进、陈步前

展开 >

上海理工大学理学院,上海 200093

知识图谱 推荐系统 可解释性 多目标优化

国家自然科学基金

12071293

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(3)
  • 28