首页|基于双流Transformer的单幅图像去雾方法

基于双流Transformer的单幅图像去雾方法

扫码查看
基于深度学习的编码器-解码器网络在图像去雾问题上取得了优异的表现.然而,这些学习方法通常仅依赖于合成数据集进行模型训练,忽视了有关模糊图像的先验知识,导致训练模型在泛化方面存在不足,无法较好地在真实雾霾图像上实现良好的去雾效果.为了充分利用与雾霾物理特性相关的信息,本文提出一种新颖的双编码器结构,该结构将基于先验知识的编码器融合到传统的编码器-解码器网络中.通过引入特征增强模块,有效地融合2个编码器深层特征.鉴于广泛采用的卷积神经网络结构在建模局部特征关联方面的局限性,本文在编码器和解码器中引入Transformer块.实验结果表明,本文所提出的方法不仅在合成数据上表现优越,而且在真实雾霾场景下也取得了较好的效果.
Bi-stream Transformer for Single Image Dehazing
The use of deep learning methods,specifically encoder-decoder networks,has obtained exceptional performance in image dehazing.However,these approaches often solely rely on synthetic datasets for training the models,ignoring prior knowl-edge about hazy images.It presents significant challenges in achieving satisfactory generalization of the trained models,leading to compromised performance on real hazy images.To address this issue and leverage insights from the physical characteristics as-sociated with haze,this paper introduces a novel dual-encoder architecture that incorporates a prior-based encoder into the tradi-tional encoder-decoder framework.By incorporating a feature enhancement module,the representations from the deep layers of the two encoders are effectively fused.Additionally,Transformer blocks are adopted in both the encoder and decoder to address the limitations of commonly used structures in capturing local feature associations.The experimental results show that the pro-posed method not only outperforms state-of-the-art techniques on synthetic data but also exhibits remarkable performance in au-thentic hazy scenarios.

image dehazingimage restorationTransformer

李岸然、方阳阳、程慧杰、张申申、阎金强、于腾、杨国为

展开 >

齐鲁工业大学(山东省科学院)山东省科学院激光研究所,山东 济宁 272000

济宁科力光电产业有限责任公司,山东 济宁 272000

青岛大学电子信息学院,山东 青岛 260000

图像去雾 图像恢复 Transformer

国家自然科学基金面上项目

62172229

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(3)
  • 41