首页|基于Ghost卷积的高级别浆液性卵巢癌复发预测方法

基于Ghost卷积的高级别浆液性卵巢癌复发预测方法

扫码查看
高级别浆液性卵巢癌是一种恶性肿瘤疾病,进行术前复发预测能帮助临床医生为患者提供个性化治疗方案,降低病人的死亡率.因该疾病的医学数据较少且难以获取,导致其深度学习模型难以得到充分的训练,复发预测准确率有待提高.针对此问题,本文设计了一种改进的低参数残差网络TGE-ResNet34,以ResNet34为主干网络,将传统卷积模块用Ghost卷积代替,完成病灶区特征的提取,降低模型的参数量,在2个Ghost卷积之间融入ECA(Efficient Channel Atten-tion)注意力机制,抑制无用特征提取的干扰,最后通过5折交叉验证模型,避免数据随机划分的偶然性.实验结果表明,改进设计的TGE-ResNet34网络准确率为96.01%,相比原基线网络准确率提高4.52个百分点,参数量减少15.98 M.
Ghost Convolution Based Prediction Method for Recurrence of High Grade Serous Ovarian Cancer
High grade serous ovarian cancer is a malignant tumor disease,and preoperative recurrence prediction can help clini-cal doctors provide personalized treatment plans for patients and reduce the mortality rate.Due to the less and difficult-to-obtain medical data of this disease,its deep learning model is difficult to obtain sufficient training,and the accuracy of recurrence pre-diction needs to be improved.To address this issue,this article proposes an improved low-parameter residual network TGE-ResNet34,which uses ResNet34 as the backbone network and replaces traditional convolution modules with Ghost convolutions to extract lesion area features and reduce the model's parameter volume.The ECA(Efficient Channel Attention)attention mechanism is incorporated between two Ghost convolutions to suppress interference from useless feature extraction.Finally,the model is evaluated through a five-fold cross-validation to avoid the randomness of data partitioning.The experimental results show that the accuracy of the improved TGE-ResNet34 network is 96.01%,which is 4.52 percentage points higher than the origi-nal baseline network's accuracy and reduces the parameter volume by 15.98 M.

high grade serous ovarian cancerresidual networkGhost convolutionattention

唐艺菠、崔少国、万皓明、王锐、刘丽丽

展开 >

重庆师范大学计算机与信息科学学院,重庆 401331

重庆医科大学第一临床学院,重庆 401331

高级别浆液性卵巢癌 残差网络 Ghost卷积 注意力

国家自然科学基金资助项目重庆市科技局自然科学基金资助项目重庆市科技局自然科学基金资助项目重庆市科技局自然科学基金资助项目教育部人文社科规划基金资助项目重庆市教委重点项目重庆市社会科学规划项目重庆师范大学人才基金资助项目重庆市研究生科研创新项目重庆市研究生科研创新项目重庆师范大学研究生科研创新项目

620030652022NSCQ-MSX29332022TFII-OFX0262cstc2019jscxmbdxX006122YJA870005KJZD-K2022005102022NDYB11920XLB004CYS22558CYS22555YKC22019

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(4)
  • 26