首页|基于AHP-CNN的加密流量分类方法

基于AHP-CNN的加密流量分类方法

扫码查看
为了解决现有方法在加密流量特征提取方面不够充分的问题,本文提出一种基于自注意力混合池化卷积神经网络(Attention-based Hybrid Pooling Convolutional Neural Network,AHP-CNN)的加密流量分类方法.该方法对卷积神经网络(Convolutional Neural Network,CNN)的池化层进行改进,以并联形式将平均池化层和最大池化层相结合,形成双层同步池化的模式,从而实现对网络加密流量整体特征和局部特征的捕捉.再将自注意力模块嵌入到模型中,增强模型对于加密流量特征依赖关系的提取,从而更加精准地对加密流量进行分类.实验结果表明,本文所提出的网络模型在识别加密流量的准确率方面有着显著提升,并且F1分数达到了0.94以上.本文为网络加密流量分类提供了一种更为有效且精确的方法,有助于提升网络安全领域的研究与应用能力.
Encryption Traffic Classification Method Based on AHP-CNN
To address the insufficient feature extraction of existing methods for encrypted traffic,this study proposes an en-crypted traffic classification method based on an Attention-based Hybrid Pooling Convolutional Neural Network(AHP-CNN).This method improves the pooling layers of Convolutional Neural Networks(CNNs)by combining average pooling and max pool-ing in a parallel manner,forming a dual-layer synchronized pooling pattern.This enables the capturing of both global and local features of network encrypted traffic.Furthermore,a self-attention module is incorporated into the model to enhance the extrac-tion of dependency relationships among encrypted traffic features,leading to more accurate classification.Experimental results demonstrate a significant improvement in the accuracy of encrypted traffic identification using the proposed model,with an F1 score exceeding 0.94.This research provides a more effective and precise approach for the classification of network encrypted traf-fic,contributing to advancements in research and applications in the field of network security.

deep learningencrypted traffic classificationconvolutional neural networkhybrid poolingself-attention mechanism

游嘉靖、何月顺、何璘琳、钟海龙

展开 >

东华理工大学信息工程学院,江西 南昌 330013

江西省网络空间安全智能感知重点实验室,江西 南昌 330013

深度学习 加密流量分类 卷积神经网络 混合池化 自注意力机制

江西省重点研发项目江西省网络空间安全智能感知重点实验室开放基金资助项目

GJJ2200729JKLGIP202206

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(4)
  • 26